Federated Cross-Incremental Self-Supervised Learning for Medical Image Segmentation

人工智能 计算机科学 分割 图像分割 图像(数学) 模式识别(心理学) 计算机视觉 机器学习
作者
Fan Zhang,Huiying Liu,Qing Cai,Chun-Mei Feng,Binglu Wang,Shanshan Wang,Junyu Dong,David Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3469962
摘要

Federated cross learning has shown impressive performance in medical image segmentation. However, it encounters the catastrophic forgetting issue caused by data heterogeneity across different clients and is particularly pronounced when simultaneously facing pixelwise label deficiency problem. In this article, we propose a novel federated cross-incremental self-supervised learning method, coined FedCSL, which not only can enable any client in the federation incrementally yet effectively learn from others without inducing knowledge forgetting or requiring massive labeled samples, but also preserve maximum data privacy. Specifically, to overcome the catastrophic forgetting issue, a novel cross-incremental collaborative distillation (CCD) mechanism is proposed, which distills explicit knowledge learned from previous clients to subsequent clients based on secure multiparty computation (MPC). Besides, an effective retrospect mechanism is designed to rearrange the training sequence of clients per round, further releasing the power of CCD by enforcing interclient knowledge propagation. In addition, to alleviate the need of large-scale densely annotated pretraining medical datasets, we also propose a two-stage training framework, in which federated cross-incremental self-supervised pretraining paradigm first extracts robust yet general image-level patterns across multi-institutional data silos via a novel round-robin distributed masked image modeling (MIM) pipeline; then, the resulting visual concepts, e.g., semantics, are transferred to the federated cross-incremental supervised fine-tuning paradigm, favoring various cross-silo medical image segmentation tasks. The experimental results on public datasets demonstrate the effectiveness of the proposed method as well as the consistently superior performance of our method over most state-of-the-art methods quantitatively and qualitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文败类应助slx采纳,获得10
1秒前
AGPPDY完成签到,获得积分10
1秒前
1秒前
2秒前
科研通AI5应助落后的手套采纳,获得10
2秒前
2秒前
4秒前
科研通AI5应助meo采纳,获得10
4秒前
HJJHJH发布了新的文献求助20
4秒前
5秒前
贺无剑完成签到,获得积分10
6秒前
孙远欣发布了新的文献求助10
7秒前
李星翰发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
li发布了新的文献求助10
8秒前
8秒前
8秒前
落伍少年完成签到,获得积分10
9秒前
planA发布了新的文献求助10
10秒前
小程同学发布了新的文献求助10
11秒前
zhangscience发布了新的文献求助10
12秒前
小兔叽发布了新的文献求助10
12秒前
Archy完成签到,获得积分10
14秒前
14秒前
qq完成签到 ,获得积分10
16秒前
dowhenin完成签到,获得积分10
16秒前
小白菜完成签到 ,获得积分10
17秒前
Grace完成签到 ,获得积分10
18秒前
泡泡完成签到 ,获得积分10
18秒前
Lucas应助zhangscience采纳,获得10
19秒前
Kuz关注了科研通微信公众号
20秒前
21秒前
可爱的函函应助拾柒采纳,获得50
22秒前
Nina完成签到 ,获得积分10
23秒前
23秒前
无知小白发布了新的文献求助10
24秒前
CAE上路到上吊完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538611
求助须知:如何正确求助?哪些是违规求助? 3116370
关于积分的说明 9324948
捐赠科研通 2814129
什么是DOI,文献DOI怎么找? 1546497
邀请新用户注册赠送积分活动 720575
科研通“疑难数据库(出版商)”最低求助积分说明 712086