亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving fluid identification in well logging using Continuous Wavelet Transform and Vision Transformers: An innovative approach

物理 小波 小波变换 变压器 登录中 人工智能 鉴定(生物学) 连续小波变换 计算机视觉 离散小波变换 模式识别(心理学) 石油工程 计算机科学 工程类 生态学 植物 量子力学 电压 生物
作者
Youzhuang Sun,Shanchen Pang,Zhihan Qiu,Yong-An Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10)
标识
DOI:10.1063/5.0221990
摘要

Well logging fluid prediction is one of the key steps in assessing oil and gas reserves. By analyzing downhole logging data, different types of fluids contained in underground rocks, such as crude oil, natural gas, and water, can be determined. This information is crucial for assessing the abundance and recoverable reserves of oil and gas resources and helps guide oil and gas exploration and development work. We have introduced a novel model called CWT (Continuous Wavelet Transform)-ViT (Vision Transformer). CWT can simultaneously provide frequency information at different scales, enabling the model to analyze downhole logging data more comprehensively and accurately at different scales. Underground rock structures often exhibit features at multiple scales, and CWT can effectively capture these features, aiding in better differentiation of different types of fluids. The ViT model utilizes the Transformer architecture, allowing for global attention over input sequences without being limited by sequence length. This enables the model to comprehensively understand the overall information of downhole logging data and extract richer features. For complex geological structures and fluid distributions in geological exploration, the global attention mechanism helps the model better grasp the overall situation, thereby improving the accuracy of fluid prediction. When we used the CWT-ViT method for well logging fluid prediction, we achieved a high accuracy rate of 97.50% in the first dataset, which further improved to 97.77% in the second dataset. These results demonstrate the significant robustness and efficiency of the CWT-ViT method in lithology prediction using well logging data. We also conducted blind well experiments, and our CWT-ViT model outperformed other models, achieving a blind well prediction accuracy of 97.36%. Therefore, the experiments indicate that the key to improving accuracy in well logging fluid prediction with CWT lies in its multiscale analysis capability, effectively capturing different fluid characteristic frequencies. Additionally, CWT enhances signal features and removes noise, increasing the precision of fluid identification. Finally, the integration with ViT further optimizes fluid prediction performance, making it outstanding in complex geological environments. The advantages of ViT in fluid prediction include its excellent sequence modeling capability, effective handling of long-distance dependencies, and enhanced ability to capture fluid characteristics in complex well logging data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中一叶完成签到 ,获得积分0
2秒前
53秒前
Yuan完成签到,获得积分10
1分钟前
早晚完成签到 ,获得积分10
1分钟前
111完成签到,获得积分10
1分钟前
violet发布了新的文献求助20
1分钟前
优秀的盼夏完成签到,获得积分10
2分钟前
111发布了新的文献求助10
4分钟前
Owen应助111采纳,获得10
4分钟前
4分钟前
zjh发布了新的文献求助10
4分钟前
锂氧完成签到 ,获得积分10
4分钟前
zjh完成签到,获得积分10
5分钟前
坚强的广山应助科研通管家采纳,获得200
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
111发布了新的文献求助10
6分钟前
Ava应助111采纳,获得10
6分钟前
6分钟前
fantw完成签到 ,获得积分10
7分钟前
charliechen完成签到 ,获得积分10
8分钟前
心随以动完成签到 ,获得积分10
9分钟前
充电宝应助kyt采纳,获得10
9分钟前
难过的钥匙完成签到 ,获得积分10
9分钟前
修辛完成签到 ,获得积分10
9分钟前
眼睛大的尔竹完成签到 ,获得积分10
9分钟前
9分钟前
kyt发布了新的文献求助10
9分钟前
科研通AI5应助张清采纳,获得10
9分钟前
爱静静应助科研通管家采纳,获得30
9分钟前
9分钟前
张清发布了新的文献求助10
9分钟前
高海龙完成签到,获得积分10
9分钟前
10分钟前
思源应助不要命的皮卡丘采纳,获得30
10分钟前
10分钟前
香蕉觅云应助成社长采纳,获得10
10分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562020
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412566
捐赠科研通 2835934
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716865