Improving fluid identification in well logging using Continuous Wavelet Transform and Vision Transformers: An innovative approach

物理 小波 小波变换 变压器 登录中 人工智能 鉴定(生物学) 连续小波变换 计算机视觉 离散小波变换 模式识别(心理学) 石油工程 计算机科学 工程类 生态学 植物 量子力学 电压 生物
作者
Youzhuang Sun,Shanchen Pang,Zhihan Qiu,Yong-An Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10)
标识
DOI:10.1063/5.0221990
摘要

Well logging fluid prediction is one of the key steps in assessing oil and gas reserves. By analyzing downhole logging data, different types of fluids contained in underground rocks, such as crude oil, natural gas, and water, can be determined. This information is crucial for assessing the abundance and recoverable reserves of oil and gas resources and helps guide oil and gas exploration and development work. We have introduced a novel model called CWT (Continuous Wavelet Transform)-ViT (Vision Transformer). CWT can simultaneously provide frequency information at different scales, enabling the model to analyze downhole logging data more comprehensively and accurately at different scales. Underground rock structures often exhibit features at multiple scales, and CWT can effectively capture these features, aiding in better differentiation of different types of fluids. The ViT model utilizes the Transformer architecture, allowing for global attention over input sequences without being limited by sequence length. This enables the model to comprehensively understand the overall information of downhole logging data and extract richer features. For complex geological structures and fluid distributions in geological exploration, the global attention mechanism helps the model better grasp the overall situation, thereby improving the accuracy of fluid prediction. When we used the CWT-ViT method for well logging fluid prediction, we achieved a high accuracy rate of 97.50% in the first dataset, which further improved to 97.77% in the second dataset. These results demonstrate the significant robustness and efficiency of the CWT-ViT method in lithology prediction using well logging data. We also conducted blind well experiments, and our CWT-ViT model outperformed other models, achieving a blind well prediction accuracy of 97.36%. Therefore, the experiments indicate that the key to improving accuracy in well logging fluid prediction with CWT lies in its multiscale analysis capability, effectively capturing different fluid characteristic frequencies. Additionally, CWT enhances signal features and removes noise, increasing the precision of fluid identification. Finally, the integration with ViT further optimizes fluid prediction performance, making it outstanding in complex geological environments. The advantages of ViT in fluid prediction include its excellent sequence modeling capability, effective handling of long-distance dependencies, and enhanced ability to capture fluid characteristics in complex well logging data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助siyisan采纳,获得10
1秒前
123发布了新的文献求助10
2秒前
奋斗瑶发布了新的文献求助30
2秒前
2秒前
3秒前
zeefly7发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
FashionBoy应助Dan采纳,获得10
3秒前
WANG完成签到,获得积分20
4秒前
科研通AI5应助震动的听安采纳,获得10
4秒前
178完成签到,获得积分10
4秒前
4秒前
小白发布了新的文献求助10
5秒前
不爱喝咖啡完成签到,获得积分10
5秒前
5秒前
所所应助奋斗瑶采纳,获得10
6秒前
豆奶发布了新的文献求助10
7秒前
morena发布了新的文献求助10
7秒前
秋秋完成签到,获得积分10
7秒前
66666发布了新的文献求助10
8秒前
12发布了新的文献求助10
8秒前
昵称231完成签到,获得积分10
8秒前
伍呜呜完成签到,获得积分10
8秒前
9秒前
苏碧萱完成签到,获得积分10
9秒前
9秒前
9秒前
LL发布了新的文献求助30
9秒前
10秒前
何小抽发布了新的文献求助10
10秒前
搜集达人应助游畅采纳,获得10
10秒前
搜集达人应助song采纳,获得10
11秒前
mzc完成签到,获得积分10
11秒前
研友_VZG7GZ应助song采纳,获得10
11秒前
天天快乐应助喜悦觅双采纳,获得10
12秒前
12秒前
Hello应助Y1234采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933690
求助须知:如何正确求助?哪些是违规求助? 4201746
关于积分的说明 13054958
捐赠科研通 3975817
什么是DOI,文献DOI怎么找? 2178602
邀请新用户注册赠送积分活动 1194932
关于科研通互助平台的介绍 1106316