Improving fluid identification in well logging using Continuous Wavelet Transform and Vision Transformers: An innovative approach

物理 小波 小波变换 变压器 登录中 人工智能 鉴定(生物学) 连续小波变换 计算机视觉 离散小波变换 模式识别(心理学) 石油工程 计算机科学 工程类 生态学 植物 量子力学 电压 生物
作者
Youzhuang Sun,Shanchen Pang,Zhihan Qiu,Yong-An Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10)
标识
DOI:10.1063/5.0221990
摘要

Well logging fluid prediction is one of the key steps in assessing oil and gas reserves. By analyzing downhole logging data, different types of fluids contained in underground rocks, such as crude oil, natural gas, and water, can be determined. This information is crucial for assessing the abundance and recoverable reserves of oil and gas resources and helps guide oil and gas exploration and development work. We have introduced a novel model called CWT (Continuous Wavelet Transform)-ViT (Vision Transformer). CWT can simultaneously provide frequency information at different scales, enabling the model to analyze downhole logging data more comprehensively and accurately at different scales. Underground rock structures often exhibit features at multiple scales, and CWT can effectively capture these features, aiding in better differentiation of different types of fluids. The ViT model utilizes the Transformer architecture, allowing for global attention over input sequences without being limited by sequence length. This enables the model to comprehensively understand the overall information of downhole logging data and extract richer features. For complex geological structures and fluid distributions in geological exploration, the global attention mechanism helps the model better grasp the overall situation, thereby improving the accuracy of fluid prediction. When we used the CWT-ViT method for well logging fluid prediction, we achieved a high accuracy rate of 97.50% in the first dataset, which further improved to 97.77% in the second dataset. These results demonstrate the significant robustness and efficiency of the CWT-ViT method in lithology prediction using well logging data. We also conducted blind well experiments, and our CWT-ViT model outperformed other models, achieving a blind well prediction accuracy of 97.36%. Therefore, the experiments indicate that the key to improving accuracy in well logging fluid prediction with CWT lies in its multiscale analysis capability, effectively capturing different fluid characteristic frequencies. Additionally, CWT enhances signal features and removes noise, increasing the precision of fluid identification. Finally, the integration with ViT further optimizes fluid prediction performance, making it outstanding in complex geological environments. The advantages of ViT in fluid prediction include its excellent sequence modeling capability, effective handling of long-distance dependencies, and enhanced ability to capture fluid characteristics in complex well logging data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏姬宁静完成签到,获得积分10
1秒前
111完成签到 ,获得积分10
1秒前
1秒前
天天喝咖啡完成签到,获得积分10
2秒前
隐形的夏青完成签到,获得积分10
4秒前
5秒前
5秒前
搜集达人应助CoverSx采纳,获得10
5秒前
小启发布了新的文献求助10
5秒前
Aurora完成签到,获得积分10
6秒前
认真谷雪完成签到,获得积分10
6秒前
高兴的海豚完成签到,获得积分10
7秒前
ecchaos发布了新的文献求助10
8秒前
专注淇完成签到,获得积分10
8秒前
fuzh发布了新的文献求助10
9秒前
9秒前
嗯嗯完成签到 ,获得积分10
11秒前
12秒前
科研通AI6应助蓝天采纳,获得10
12秒前
13秒前
香蕉觅云应助阿桔采纳,获得10
13秒前
ww发布了新的文献求助10
14秒前
14秒前
ok发布了新的文献求助10
15秒前
zar发布了新的文献求助20
16秒前
16秒前
16秒前
17秒前
18秒前
18秒前
19秒前
阳光台灯关注了科研通微信公众号
19秒前
云朵完成签到,获得积分10
20秒前
土豆发布了新的文献求助10
20秒前
任性糖豆发布了新的文献求助10
21秒前
Sere发布了新的文献求助10
22秒前
March发布了新的文献求助10
22秒前
22秒前
花骨头发布了新的文献求助10
23秒前
summer夏完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589017
求助须知:如何正确求助?哪些是违规求助? 4671762
关于积分的说明 14789530
捐赠科研通 4627020
什么是DOI,文献DOI怎么找? 2532031
邀请新用户注册赠送积分活动 1500644
关于科研通互助平台的介绍 1468373