Improving fluid identification in well logging using Continuous Wavelet Transform and Vision Transformers: An innovative approach

物理 小波 小波变换 变压器 登录中 人工智能 鉴定(生物学) 连续小波变换 计算机视觉 离散小波变换 模式识别(心理学) 石油工程 计算机科学 工程类 生物 量子力学 植物 电压 生态学
作者
Youzhuang Sun,Shanchen Pang,Zhihan Qiu,Yong-An Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10)
标识
DOI:10.1063/5.0221990
摘要

Well logging fluid prediction is one of the key steps in assessing oil and gas reserves. By analyzing downhole logging data, different types of fluids contained in underground rocks, such as crude oil, natural gas, and water, can be determined. This information is crucial for assessing the abundance and recoverable reserves of oil and gas resources and helps guide oil and gas exploration and development work. We have introduced a novel model called CWT (Continuous Wavelet Transform)-ViT (Vision Transformer). CWT can simultaneously provide frequency information at different scales, enabling the model to analyze downhole logging data more comprehensively and accurately at different scales. Underground rock structures often exhibit features at multiple scales, and CWT can effectively capture these features, aiding in better differentiation of different types of fluids. The ViT model utilizes the Transformer architecture, allowing for global attention over input sequences without being limited by sequence length. This enables the model to comprehensively understand the overall information of downhole logging data and extract richer features. For complex geological structures and fluid distributions in geological exploration, the global attention mechanism helps the model better grasp the overall situation, thereby improving the accuracy of fluid prediction. When we used the CWT-ViT method for well logging fluid prediction, we achieved a high accuracy rate of 97.50% in the first dataset, which further improved to 97.77% in the second dataset. These results demonstrate the significant robustness and efficiency of the CWT-ViT method in lithology prediction using well logging data. We also conducted blind well experiments, and our CWT-ViT model outperformed other models, achieving a blind well prediction accuracy of 97.36%. Therefore, the experiments indicate that the key to improving accuracy in well logging fluid prediction with CWT lies in its multiscale analysis capability, effectively capturing different fluid characteristic frequencies. Additionally, CWT enhances signal features and removes noise, increasing the precision of fluid identification. Finally, the integration with ViT further optimizes fluid prediction performance, making it outstanding in complex geological environments. The advantages of ViT in fluid prediction include its excellent sequence modeling capability, effective handling of long-distance dependencies, and enhanced ability to capture fluid characteristics in complex well logging data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助猪肉水饺采纳,获得10
2秒前
Otorhino发布了新的文献求助10
3秒前
3秒前
嘿嘿嘿完成签到,获得积分10
4秒前
jaytotti完成签到,获得积分10
4秒前
qqshown发布了新的文献求助10
5秒前
李禹民给adheret的求助进行了留言
5秒前
领导范儿应助yyy采纳,获得10
7秒前
秦宇麒完成签到,获得积分20
8秒前
浮尘完成签到 ,获得积分0
8秒前
DengLingjie完成签到,获得积分20
9秒前
wang发布了新的文献求助10
10秒前
哎哟很烦完成签到,获得积分10
10秒前
情怀应助秦宇麒采纳,获得10
12秒前
weddcf发布了新的文献求助20
13秒前
小二郎应助seem233采纳,获得10
13秒前
毅诚菌完成签到,获得积分10
15秒前
迷路羽毛发布了新的文献求助10
15秒前
16秒前
江浔卿完成签到 ,获得积分10
18秒前
yyy完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
yyy发布了新的文献求助10
21秒前
21秒前
大胆胡萝卜完成签到,获得积分10
22秒前
Lucas应助十七采纳,获得10
22秒前
23秒前
drgaoying发布了新的文献求助10
23秒前
绿泡芙完成签到 ,获得积分10
23秒前
23秒前
24秒前
宁静致远完成签到,获得积分10
25秒前
猪肉水饺发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
唐焱杰完成签到,获得积分10
26秒前
万能图书馆应助俭朴青烟采纳,获得10
26秒前
汤朝雪发布了新的文献求助20
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010343
求助须知:如何正确求助?哪些是违规求助? 3550209
关于积分的说明 11305256
捐赠科研通 3284663
什么是DOI,文献DOI怎么找? 1810786
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451