亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving fluid identification in well logging using Continuous Wavelet Transform and Vision Transformers: An innovative approach

物理 小波 小波变换 变压器 登录中 人工智能 鉴定(生物学) 连续小波变换 计算机视觉 离散小波变换 模式识别(心理学) 石油工程 计算机科学 工程类 生物 量子力学 植物 电压 生态学
作者
Youzhuang Sun,Shanchen Pang,Zhihan Qiu,Yong-An Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10)
标识
DOI:10.1063/5.0221990
摘要

Well logging fluid prediction is one of the key steps in assessing oil and gas reserves. By analyzing downhole logging data, different types of fluids contained in underground rocks, such as crude oil, natural gas, and water, can be determined. This information is crucial for assessing the abundance and recoverable reserves of oil and gas resources and helps guide oil and gas exploration and development work. We have introduced a novel model called CWT (Continuous Wavelet Transform)-ViT (Vision Transformer). CWT can simultaneously provide frequency information at different scales, enabling the model to analyze downhole logging data more comprehensively and accurately at different scales. Underground rock structures often exhibit features at multiple scales, and CWT can effectively capture these features, aiding in better differentiation of different types of fluids. The ViT model utilizes the Transformer architecture, allowing for global attention over input sequences without being limited by sequence length. This enables the model to comprehensively understand the overall information of downhole logging data and extract richer features. For complex geological structures and fluid distributions in geological exploration, the global attention mechanism helps the model better grasp the overall situation, thereby improving the accuracy of fluid prediction. When we used the CWT-ViT method for well logging fluid prediction, we achieved a high accuracy rate of 97.50% in the first dataset, which further improved to 97.77% in the second dataset. These results demonstrate the significant robustness and efficiency of the CWT-ViT method in lithology prediction using well logging data. We also conducted blind well experiments, and our CWT-ViT model outperformed other models, achieving a blind well prediction accuracy of 97.36%. Therefore, the experiments indicate that the key to improving accuracy in well logging fluid prediction with CWT lies in its multiscale analysis capability, effectively capturing different fluid characteristic frequencies. Additionally, CWT enhances signal features and removes noise, increasing the precision of fluid identification. Finally, the integration with ViT further optimizes fluid prediction performance, making it outstanding in complex geological environments. The advantages of ViT in fluid prediction include its excellent sequence modeling capability, effective handling of long-distance dependencies, and enhanced ability to capture fluid characteristics in complex well logging data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12345发布了新的文献求助10
1秒前
13秒前
twk发布了新的文献求助10
19秒前
joeqin完成签到,获得积分10
27秒前
35秒前
35秒前
36秒前
田様应助科研通管家采纳,获得10
36秒前
ZaZa完成签到,获得积分10
1分钟前
1分钟前
zhao发布了新的文献求助10
1分钟前
1分钟前
研友_ZbP41L完成签到 ,获得积分10
1分钟前
zhao完成签到,获得积分10
2分钟前
charih完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
FashionBoy应助白云四季采纳,获得10
2分钟前
jyzzz应助张浩采纳,获得10
3分钟前
4分钟前
4分钟前
wangzai发布了新的文献求助10
4分钟前
赘婿应助堪冥采纳,获得10
4分钟前
wangzai完成签到,获得积分10
4分钟前
荷兰香猪完成签到,获得积分10
4分钟前
4分钟前
Wei发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
英姑应助科研通管家采纳,获得10
4分钟前
Tobby发布了新的文献求助20
4分钟前
时间煮雨我煮鱼完成签到,获得积分10
4分钟前
Tobby完成签到,获得积分10
4分钟前
Voyager发布了新的文献求助10
5分钟前
5分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746922
求助须知:如何正确求助?哪些是违规求助? 5440291
关于积分的说明 15356030
捐赠科研通 4886949
什么是DOI,文献DOI怎么找? 2627491
邀请新用户注册赠送积分活动 1575931
关于科研通互助平台的介绍 1532729