Impedance-Based Online Detection of Lithium-Deposition with Graphite Half-Cells

电极 阳极 石墨 材料科学 锂(药物) 介电谱 分离器(采油) 集电器 插层(化学) 分析化学(期刊) 电化学 化学工程 光电子学 纳米技术 电解质 化学 复合材料 无机化学 色谱法 医学 物理 物理化学 工程类 热力学 内分泌学
作者
Felix Katzer,Tom Rüther,Felix Roth,Michael A. Danzer
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (1): 76-76
标识
DOI:10.1149/ma2022-02176mtgabs
摘要

In the experimental part of our study, we lithiate graphite anodes in half-cell-assemblies with varying, uncritical, and critical current densities and analyse the impedance behaviour in order to find anomalies which can be used for the detection of lithium deposition (LD). Due to kinetic limitations of the desired intercalation of lithium ions into the lattice structure at high current densities and low temperatures, the ions will deposit metallically on the electrode surface instead. This parasitic side reaction leads to rapid loss of lithium inventory and may also lead due to dendrite formation to separator penetration, and therewith, complete cell failure. In the last years much research effort has been spent on detection methods of LD to prevent this severe degradation mechanism. Numerous retrospective methods [1–5] have been published but only few detect LD online during the charging process itself [6–8]. The latter allow the detection during graphite lithiation which would be highly beneficial for online charge control. The most promising publications are based on electrochemical impedance spectroscopy (EIS) during charging on experimental or commercial full-cells, but the groups show contradicting results. In this study we apply EIS during lithiation of graphite half cells, in order to solely analyse the polarisation behaviour on the relevant electrode – the graphite anode. For our experiments we extracted graphite electrode samples from commercial high-power cells and integrated them as working electrodes (WE) in experimental cells, with lithium-foil as counter electrodes (CE) and a lithium ring reference electrode (RE). In our approach we lithiate the graphite anode with varying, critical, and uncritical current densities via the CE. The measurement of the anodic potential and the half-cell impedance are conducted via the RE to ensure that effects from the CE are eliminated. Compared to the potential analysis, the impedance analysis offers the opportunity to separate single polarisation effects, like charge transfer or solid-state diffusion, and offers a more precise interpretation of the physicochemical behaviour. Therefore, the half-cell is initially characterised with electrochemical impedance spectroscopy and the distribution of relaxation times to identify the characteristic excitation frequencies f c of the most dominant electrochemical processes. LD is provoked on purpose by lithiating the anode from the complete delithiated state to a degree of lithiation of 80 % at a low temperature of 5 °C. During charging, the impedances measured at the frequencies f c, enable the tracking of single polarisation effects. In parallel the anode potential is measured to exclude the occurrence of LD as long as the potential does not fall below 0 V vs. Li/Li + , the reduction potential of lithium ions. After the end of charge the anodic potential and the impedances at f c are measured for 1 h. During this relaxation phase the state-of-the art differential voltage analysis [4] is used as a reference method to proof LD and the method of impedance relaxation [5] is applied firstly on graphite half-cells. The results show a reproducible impedance drop for critical charging events, which is in line with the majority of other studies [7, 9, 10]. The most sensitive processes seem to be the charge transfer and migration through the solid electrolyte interphase. Tracking these processes increase the sensibility of the method – and knowing which processes are relevant enables the transfer of the method to other cell systems. Furthermore, the retrospective detection method using impedance relaxation was successfully applied and validated. References [1] 10.1149/2.0621506jes [2] 10.1016/j.jpowsour.2015.11.044 [3] 10.1016/j.jpowsour.2021.230870 [4] 10.1016/j.jpowsour.2021.230449 [5] 10.1016/j.jpowsour.2021.230009 [6] 10.1016/j.xcrp.2021.100589 [7] 10.1016/j.jpowsour.2021.230508 [8] 10.1016/j.jpowsour.2021.229794 [9] 10.3390/batteries7030046 [10] 10.1016/j.jpowsour.2020.227798

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老詹头应助流年羽采纳,获得10
2秒前
dadadada发布了新的文献求助30
3秒前
4秒前
七七完成签到 ,获得积分10
4秒前
6秒前
昆仑山吴某完成签到 ,获得积分10
6秒前
7秒前
大个应助洛源采纳,获得10
12秒前
hfcao发布了新的文献求助10
13秒前
13秒前
LHH完成签到 ,获得积分10
14秒前
14秒前
JQK完成签到 ,获得积分10
14秒前
16秒前
quhayley应助dadadada采纳,获得10
17秒前
外向翠萱完成签到,获得积分20
18秒前
Neinei发布了新的文献求助10
18秒前
19秒前
23秒前
24秒前
26秒前
bkagyin应助鲜艳的冰颜采纳,获得10
27秒前
27秒前
wufabini发布了新的文献求助10
27秒前
Neinei完成签到,获得积分10
29秒前
29秒前
米粒发布了新的文献求助10
29秒前
hbhbj完成签到,获得积分10
30秒前
不倦完成签到,获得积分10
32秒前
资山雁发布了新的文献求助10
33秒前
薰硝壤应助科研螺丝采纳,获得20
34秒前
AFASF完成签到,获得积分20
36秒前
36秒前
IvanMcRae发布了新的文献求助10
36秒前
NexusExplorer应助熊猫盖浇饭采纳,获得10
36秒前
38秒前
38秒前
羽6发布了新的文献求助10
41秒前
wanglu完成签到,获得积分10
42秒前
44秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153361
求助须知:如何正确求助?哪些是违规求助? 2804608
关于积分的说明 7860306
捐赠科研通 2462547
什么是DOI,文献DOI怎么找? 1310806
科研通“疑难数据库(出版商)”最低求助积分说明 629396
版权声明 601794