亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Impedance-Based Online Detection of Lithium-Deposition with Graphite Half-Cells

电极 阳极 石墨 材料科学 锂(药物) 介电谱 分离器(采油) 集电器 插层(化学) 分析化学(期刊) 电化学 化学工程 光电子学 纳米技术 电解质 化学 复合材料 无机化学 色谱法 医学 物理化学 内分泌学 工程类 物理 热力学
作者
Felix Katzer,Tom Rüther,Felix Roth,Michael A. Danzer
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (1): 76-76
标识
DOI:10.1149/ma2022-02176mtgabs
摘要

In the experimental part of our study, we lithiate graphite anodes in half-cell-assemblies with varying, uncritical, and critical current densities and analyse the impedance behaviour in order to find anomalies which can be used for the detection of lithium deposition (LD). Due to kinetic limitations of the desired intercalation of lithium ions into the lattice structure at high current densities and low temperatures, the ions will deposit metallically on the electrode surface instead. This parasitic side reaction leads to rapid loss of lithium inventory and may also lead due to dendrite formation to separator penetration, and therewith, complete cell failure. In the last years much research effort has been spent on detection methods of LD to prevent this severe degradation mechanism. Numerous retrospective methods [1–5] have been published but only few detect LD online during the charging process itself [6–8]. The latter allow the detection during graphite lithiation which would be highly beneficial for online charge control. The most promising publications are based on electrochemical impedance spectroscopy (EIS) during charging on experimental or commercial full-cells, but the groups show contradicting results. In this study we apply EIS during lithiation of graphite half cells, in order to solely analyse the polarisation behaviour on the relevant electrode – the graphite anode. For our experiments we extracted graphite electrode samples from commercial high-power cells and integrated them as working electrodes (WE) in experimental cells, with lithium-foil as counter electrodes (CE) and a lithium ring reference electrode (RE). In our approach we lithiate the graphite anode with varying, critical, and uncritical current densities via the CE. The measurement of the anodic potential and the half-cell impedance are conducted via the RE to ensure that effects from the CE are eliminated. Compared to the potential analysis, the impedance analysis offers the opportunity to separate single polarisation effects, like charge transfer or solid-state diffusion, and offers a more precise interpretation of the physicochemical behaviour. Therefore, the half-cell is initially characterised with electrochemical impedance spectroscopy and the distribution of relaxation times to identify the characteristic excitation frequencies f c of the most dominant electrochemical processes. LD is provoked on purpose by lithiating the anode from the complete delithiated state to a degree of lithiation of 80 % at a low temperature of 5 °C. During charging, the impedances measured at the frequencies f c, enable the tracking of single polarisation effects. In parallel the anode potential is measured to exclude the occurrence of LD as long as the potential does not fall below 0 V vs. Li/Li + , the reduction potential of lithium ions. After the end of charge the anodic potential and the impedances at f c are measured for 1 h. During this relaxation phase the state-of-the art differential voltage analysis [4] is used as a reference method to proof LD and the method of impedance relaxation [5] is applied firstly on graphite half-cells. The results show a reproducible impedance drop for critical charging events, which is in line with the majority of other studies [7, 9, 10]. The most sensitive processes seem to be the charge transfer and migration through the solid electrolyte interphase. Tracking these processes increase the sensibility of the method – and knowing which processes are relevant enables the transfer of the method to other cell systems. Furthermore, the retrospective detection method using impedance relaxation was successfully applied and validated. References [1] 10.1149/2.0621506jes [2] 10.1016/j.jpowsour.2015.11.044 [3] 10.1016/j.jpowsour.2021.230870 [4] 10.1016/j.jpowsour.2021.230449 [5] 10.1016/j.jpowsour.2021.230009 [6] 10.1016/j.xcrp.2021.100589 [7] 10.1016/j.jpowsour.2021.230508 [8] 10.1016/j.jpowsour.2021.229794 [9] 10.3390/batteries7030046 [10] 10.1016/j.jpowsour.2020.227798

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星尘0314发布了新的文献求助10
3秒前
38秒前
44秒前
Akim应助星尘0314采纳,获得10
55秒前
ZJY完成签到 ,获得积分10
55秒前
科研小南完成签到 ,获得积分10
59秒前
Jason完成签到,获得积分10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
ZanE完成签到,获得积分10
1分钟前
Jiang完成签到,获得积分20
1分钟前
Jason发布了新的文献求助10
1分钟前
谦让的鱼完成签到,获得积分10
1分钟前
catherine完成签到,获得积分10
1分钟前
大个应助Pursork采纳,获得10
2分钟前
PeterDeng完成签到,获得积分10
2分钟前
领导范儿应助fveie采纳,获得10
2分钟前
浮游应助今年花生去年红采纳,获得10
2分钟前
2分钟前
Pursork发布了新的文献求助10
2分钟前
科目三应助小圭采纳,获得10
2分钟前
小蘑菇应助朴素难敌采纳,获得30
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI6应助转转王转转采纳,获得10
3分钟前
GRG完成签到 ,获得积分0
3分钟前
Wj发布了新的文献求助10
3分钟前
所所应助Wj采纳,获得10
4分钟前
4分钟前
朴素难敌发布了新的文献求助30
4分钟前
5分钟前
usora发布了新的文献求助10
5分钟前
usora完成签到,获得积分10
5分钟前
5分钟前
Auralis完成签到 ,获得积分10
5分钟前
朴素难敌完成签到,获得积分10
5分钟前
6分钟前
丸子完成签到 ,获得积分10
6分钟前
6分钟前
五五完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459158
求助须知:如何正确求助?哪些是违规求助? 4564898
关于积分的说明 14297299
捐赠科研通 4489983
什么是DOI,文献DOI怎么找? 2459484
邀请新用户注册赠送积分活动 1449127
关于科研通互助平台的介绍 1424596