Impedance-Based Online Detection of Lithium-Deposition with Graphite Half-Cells

电极 阳极 石墨 材料科学 锂(药物) 介电谱 分离器(采油) 集电器 插层(化学) 分析化学(期刊) 电化学 化学工程 光电子学 纳米技术 电解质 化学 复合材料 无机化学 色谱法 医学 物理化学 内分泌学 工程类 物理 热力学
作者
Felix Katzer,Tom Rüther,Felix Roth,Michael A. Danzer
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (1): 76-76
标识
DOI:10.1149/ma2022-02176mtgabs
摘要

In the experimental part of our study, we lithiate graphite anodes in half-cell-assemblies with varying, uncritical, and critical current densities and analyse the impedance behaviour in order to find anomalies which can be used for the detection of lithium deposition (LD). Due to kinetic limitations of the desired intercalation of lithium ions into the lattice structure at high current densities and low temperatures, the ions will deposit metallically on the electrode surface instead. This parasitic side reaction leads to rapid loss of lithium inventory and may also lead due to dendrite formation to separator penetration, and therewith, complete cell failure. In the last years much research effort has been spent on detection methods of LD to prevent this severe degradation mechanism. Numerous retrospective methods [1–5] have been published but only few detect LD online during the charging process itself [6–8]. The latter allow the detection during graphite lithiation which would be highly beneficial for online charge control. The most promising publications are based on electrochemical impedance spectroscopy (EIS) during charging on experimental or commercial full-cells, but the groups show contradicting results. In this study we apply EIS during lithiation of graphite half cells, in order to solely analyse the polarisation behaviour on the relevant electrode – the graphite anode. For our experiments we extracted graphite electrode samples from commercial high-power cells and integrated them as working electrodes (WE) in experimental cells, with lithium-foil as counter electrodes (CE) and a lithium ring reference electrode (RE). In our approach we lithiate the graphite anode with varying, critical, and uncritical current densities via the CE. The measurement of the anodic potential and the half-cell impedance are conducted via the RE to ensure that effects from the CE are eliminated. Compared to the potential analysis, the impedance analysis offers the opportunity to separate single polarisation effects, like charge transfer or solid-state diffusion, and offers a more precise interpretation of the physicochemical behaviour. Therefore, the half-cell is initially characterised with electrochemical impedance spectroscopy and the distribution of relaxation times to identify the characteristic excitation frequencies f c of the most dominant electrochemical processes. LD is provoked on purpose by lithiating the anode from the complete delithiated state to a degree of lithiation of 80 % at a low temperature of 5 °C. During charging, the impedances measured at the frequencies f c, enable the tracking of single polarisation effects. In parallel the anode potential is measured to exclude the occurrence of LD as long as the potential does not fall below 0 V vs. Li/Li + , the reduction potential of lithium ions. After the end of charge the anodic potential and the impedances at f c are measured for 1 h. During this relaxation phase the state-of-the art differential voltage analysis [4] is used as a reference method to proof LD and the method of impedance relaxation [5] is applied firstly on graphite half-cells. The results show a reproducible impedance drop for critical charging events, which is in line with the majority of other studies [7, 9, 10]. The most sensitive processes seem to be the charge transfer and migration through the solid electrolyte interphase. Tracking these processes increase the sensibility of the method – and knowing which processes are relevant enables the transfer of the method to other cell systems. Furthermore, the retrospective detection method using impedance relaxation was successfully applied and validated. References [1] 10.1149/2.0621506jes [2] 10.1016/j.jpowsour.2015.11.044 [3] 10.1016/j.jpowsour.2021.230870 [4] 10.1016/j.jpowsour.2021.230449 [5] 10.1016/j.jpowsour.2021.230009 [6] 10.1016/j.xcrp.2021.100589 [7] 10.1016/j.jpowsour.2021.230508 [8] 10.1016/j.jpowsour.2021.229794 [9] 10.3390/batteries7030046 [10] 10.1016/j.jpowsour.2020.227798

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
充电宝应助Leah采纳,获得10
刚刚
爱吃姜的面条完成签到,获得积分10
1秒前
domingo发布了新的文献求助30
1秒前
沉默的靖儿完成签到 ,获得积分10
2秒前
wanci应助快乐小狗采纳,获得10
3秒前
卡卡光波完成签到,获得积分10
3秒前
虚心的老头完成签到,获得积分10
3秒前
Ava应助Orange采纳,获得10
3秒前
玄音完成签到,获得积分10
4秒前
zzw完成签到,获得积分10
5秒前
5秒前
7秒前
8秒前
8秒前
8秒前
8秒前
Akim应助bhappy21采纳,获得10
10秒前
妮妮完成签到,获得积分10
11秒前
13秒前
13秒前
Foura发布了新的文献求助10
14秒前
14秒前
kobegirl发布了新的文献求助10
14秒前
科研通AI5应助sxmt123456789采纳,获得10
14秒前
Bake发布了新的文献求助10
14秒前
14秒前
will发布了新的文献求助10
14秒前
快乐的忆安完成签到,获得积分10
15秒前
二二完成签到,获得积分10
15秒前
无为完成签到,获得积分10
15秒前
SGLY完成签到,获得积分10
15秒前
洋洋发布了新的文献求助30
15秒前
15秒前
16秒前
18秒前
18秒前
19秒前
ShyerC完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192038
求助须知:如何正确求助?哪些是违规求助? 4375147
关于积分的说明 13623731
捐赠科研通 4229284
什么是DOI,文献DOI怎么找? 2319783
邀请新用户注册赠送积分活动 1318375
关于科研通互助平台的介绍 1268503