Membership Inference Attacks by Exploiting Loss Trajectory

杠杆(统计) 计算机科学 推论 利用 对手 弹道 人工智能 过程(计算) 机器学习 序列(生物学) 数据挖掘 计算机安全 物理 操作系统 生物 遗传学 天文
作者
Yiyong Liu,Zhengyu Zhao,Michael Backes,Yang Zhang
标识
DOI:10.1145/3548606.3560684
摘要

Machine learning models are vulnerable to membership inference attacks in which an adversary aims to predict whether or not a particular sample was contained in the target model's training dataset. Existing attack methods have commonly exploited the output information (mostly, losses) solely from the given target model. As a result, in practical scenarios where both the member and non-member samples yield similarly small losses, these methods are naturally unable to differentiate between them. To address this limitation, in this paper, we propose a new attack method, called TrajectoryMIA, which can exploit the membership information from the whole training process of the target model for improving the attack performance. To mount the attack in the common black-box setting, we leverage knowledge distillation, and represent the membership information by the losses evaluated on a sequence of intermediate models at different distillation epochs, namely distilled loss trajectory, together with the loss from the given target model. Experimental results over different datasets and model architectures demonstrate the great advantage of our attack in terms of different metrics. For example, on CINIC-10, our attack achieves at least 6 times higher true-positive rate at a low false-positive rate of 0.1% than existing methods. Further analysis demonstrates the general effectiveness of our attack in more strict scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
严智杰发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
2秒前
蜜蜜芪发布了新的文献求助10
2秒前
无花果应助义气代梅采纳,获得10
3秒前
之乎者也完成签到,获得积分10
3秒前
花海发布了新的文献求助10
3秒前
小二郎应助bhbmn采纳,获得30
4秒前
4秒前
咖褐发布了新的文献求助10
4秒前
gwt发布了新的文献求助10
5秒前
洒脱完成签到 ,获得积分10
5秒前
吞金发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
湘崽丫完成签到 ,获得积分10
7秒前
viper3完成签到,获得积分10
7秒前
8秒前
乐乐应助xyyl采纳,获得10
9秒前
9秒前
10秒前
11秒前
11秒前
Dream发布了新的文献求助10
11秒前
sunbai发布了新的文献求助10
11秒前
equinox发布了新的文献求助10
11秒前
12秒前
12秒前
葛稀驳回了Akim应助
12秒前
13秒前
13秒前
852应助咖褐采纳,获得10
13秒前
13秒前
14秒前
14秒前
张111发布了新的文献求助10
14秒前
hbhbj发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058