气凝胶
电催化剂
合金
材料科学
化学工程
电化学
化学
纳米技术
冶金
物理化学
电极
工程类
作者
Xiaodong Wu,Chunsheng Ni,Jianwei Man,Xiaodong Shen,Sheng Cui,Xiangbao Chen
标识
DOI:10.1016/j.cej.2022.140293
摘要
• A highly efficient Pd 3 Cu aerogel alloy for oxygen reduction reaction is firstly developed. • The aerogel alloy displays much enhanced ORR activity as compared with the noble metals. • The aerogel alloy also delivers excellent and multifunctional HER and EOR performance. • The density functional theory calculations are carried out for revealing the ORR mechanism. Pd has been considered as a potential substitution of the Pt-based electrocatalyst for oxygen reduction reaction (ORR) in the fields of fuel cells, however, the binding strength between the bare surface and the intermediates is much stronger than that on Pt, leading to its inferior ORR activity. Alloying noble metals with nonprecious metals provides a cost-effective strategy for electrocatalyst design. In this work, we have demonstrated a novel Pd 3 Cu aerogel electrocatalyst derived from a mild reduction agent via the self-assembly and freeze-drying technique. The resulting catalyst shows a typical three-dimensional and “pearl-like” aerogel structure. Combining the structural features and optimized chemical compositions, the Pd 3 Cu aerogel exhibits remarkable pH-independent performance over the commercial Pt/C electrocatalyst. Notably, the optimized Pd 3 Cu aerogel displays excellent ORR activity with a half-wave potential of 0.90 V vs. RHE, with a limiting current density of 5.8mA/cm 2 under the alkaline conditions, which is among the best of the reported noble metal-based ORR electrocatalysts. In addition, the resulting Pd 3 Cu aerogel delivers excellent hydrogen evolution reaction (HER) and ethanol oxidation reaction (EOR) performance. Furthermore, the density functional theory (DFT) calculations reveal that the unique partially oxidized Pd 3 Cu aerogel has led to a shift‐down of the d-band center of the active sites, which energetically optimizes the binding strength of the adsorbed O intermediate during the ORR process, therefore accelerating the ORR activity. These findings provide a new pathway for the integrated engineering of geometric and electronic structures of metal alloys to improve their electrocatalytic property.
科研通智能强力驱动
Strongly Powered by AbleSci AI