已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Time window optimization for attended home service delivery under multiple sources of uncertainties

窗口(计算) 计算机科学 服务(商务) 运筹学 数学 业务 万维网 营销
作者
Xian Yu,Siqian Shen,Babak Badri-Koohi,Haitham Seada
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:150: 106045-106045 被引量:5
标识
DOI:10.1016/j.cor.2022.106045
摘要

We consider a vehicle routing problem variant to optimize time window assignments together with vehicle routing and scheduling decisions, under the uncertainties of trip time, service time and possible customers’ cancellations. We minimize the expected cost of vehicles’ overtime, idleness, and customer waiting, when also allowing to add new customers to existing schedules. We formulate a two-stage stochastic mixed-integer programming model using finite samples of the uncertain parameters, where in the first stage, we optimize vehicle routes and assign service time windows to customers, and in the second stage, we construct a linear program to compute the resultant undesirable cost given routes and time windows. We also propose a re-optimization method and an insertion-based linear program for accommodating real-time requests in a rolling horizon way for dynamic operations. To speed up computation, we further decompose the problem into three phases and propose Assignment–Routing–Scheduling heuristics. We first design three clustering algorithms based on spatial similarities to assign customers to vehicles, and then combine the nearest-neighbor and smallest-variance rules to decide the route for each vehicle. Finally, we cast the scheduling part as a Newsvendor problem variant and apply inventory approximations to derive closed-form solutions for determining time windows. We conduct numerical studies on diverse instances generated using both well-established benchmark data sets and Ford’s mobile service data, to compare different approaches and demonstrate the benefits of allowing flexible time-window assignments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Linn完成签到,获得积分10
刚刚
充电宝应助良月二十三采纳,获得10
刚刚
小支完成签到 ,获得积分10
刚刚
1秒前
luor发布了新的文献求助10
1秒前
雨雨完成签到,获得积分10
3秒前
3秒前
4秒前
姜饼糖果屋完成签到,获得积分10
4秒前
6秒前
雨雨发布了新的文献求助10
6秒前
7秒前
小林子发布了新的文献求助10
8秒前
852应助平淡的从灵采纳,获得10
8秒前
9秒前
10秒前
wen发布了新的文献求助10
10秒前
bkagyin应助唐一采纳,获得10
11秒前
linkman发布了新的文献求助10
13秒前
韭黄发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
16秒前
钢铁之心发布了新的文献求助10
16秒前
19秒前
19秒前
哭泣的鞋子完成签到,获得积分10
20秒前
gjn发布了新的文献求助10
20秒前
噜啦啦完成签到 ,获得积分10
21秒前
唐很甜完成签到 ,获得积分10
21秒前
Komorebi完成签到 ,获得积分10
22秒前
脑洞疼应助韭黄采纳,获得10
22秒前
23秒前
25秒前
25秒前
26秒前
周稅完成签到,获得积分10
27秒前
triptalk发布了新的文献求助10
27秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650033
求助须知:如何正确求助?哪些是违规求助? 4779657
关于积分的说明 15051014
捐赠科研通 4808937
什么是DOI,文献DOI怎么找? 2571930
邀请新用户注册赠送积分活动 1528192
关于科研通互助平台的介绍 1487029