Time window optimization for attended home service delivery under multiple sources of uncertainties

窗口(计算) 计算机科学 服务(商务) 运筹学 数学 业务 万维网 营销
作者
Xian Yu,Siqian Shen,Babak Badri-Koohi,Haitham Seada
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:150: 106045-106045 被引量:5
标识
DOI:10.1016/j.cor.2022.106045
摘要

We consider a vehicle routing problem variant to optimize time window assignments together with vehicle routing and scheduling decisions, under the uncertainties of trip time, service time and possible customers’ cancellations. We minimize the expected cost of vehicles’ overtime, idleness, and customer waiting, when also allowing to add new customers to existing schedules. We formulate a two-stage stochastic mixed-integer programming model using finite samples of the uncertain parameters, where in the first stage, we optimize vehicle routes and assign service time windows to customers, and in the second stage, we construct a linear program to compute the resultant undesirable cost given routes and time windows. We also propose a re-optimization method and an insertion-based linear program for accommodating real-time requests in a rolling horizon way for dynamic operations. To speed up computation, we further decompose the problem into three phases and propose Assignment–Routing–Scheduling heuristics. We first design three clustering algorithms based on spatial similarities to assign customers to vehicles, and then combine the nearest-neighbor and smallest-variance rules to decide the route for each vehicle. Finally, we cast the scheduling part as a Newsvendor problem variant and apply inventory approximations to derive closed-form solutions for determining time windows. We conduct numerical studies on diverse instances generated using both well-established benchmark data sets and Ford’s mobile service data, to compare different approaches and demonstrate the benefits of allowing flexible time-window assignments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WJ发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
YiHe完成签到 ,获得积分10
刚刚
Criminology34举报202430621130求助涉嫌违规
刚刚
刚刚
小郭发布了新的文献求助10
1秒前
无极微光应助YoungLee采纳,获得20
1秒前
无风完成签到,获得积分10
1秒前
好名字发布了新的文献求助10
2秒前
2秒前
000发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
绵绵球发布了新的文献求助10
4秒前
4秒前
4秒前
大胆芯发布了新的文献求助10
4秒前
4秒前
所所应助丁蕾采纳,获得10
5秒前
5秒前
bin发布了新的文献求助10
5秒前
Aurora完成签到,获得积分10
6秒前
7秒前
汉堡包应助ye采纳,获得10
7秒前
132发布了新的文献求助10
7秒前
牛肉mianbo发布了新的文献求助10
7秒前
xxf发布了新的文献求助10
7秒前
隐形曼青应助xiaomage采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
小丸子的樱桃红完成签到,获得积分10
10秒前
邱文县发布了新的文献求助10
10秒前
Mao关闭了Mao文献求助
10秒前
小郭完成签到,获得积分10
10秒前
jzt12138发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667