Hypergraph Structural Information Aggregation Generative Adversarial Networks for Diagnosis and Pathogenetic Factors Identification of Alzheimer’s Disease With Imaging Genetic Data

超图 鉴别器 计算机科学 顶点(图论) 图形 发电机(电路理论) 模式识别(心理学) 人工智能 卷积(计算机科学) 理论计算机科学 数学 人工神经网络 组合数学 量子力学 电信 探测器 物理 功率(物理)
作者
Xia-an Bi,Yu Wang,Sheng Luo,Ke Chen,Zhaoxu Xing,Luyun Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7420-7434 被引量:10
标识
DOI:10.1109/tnnls.2022.3212700
摘要

Alzheimer's disease (AD) is a neurodegenerative disease with profound pathogenetic causes. Imaging genetic data analysis can provide comprehensive insights into its causes. To fully utilize the multi-level information in the data, this article proposes a hypergraph structural information aggregation model, and constructs a novel deep learning method named hypergraph structural information aggregation generative adversarial networks (HSIA-GANs) for the automatic sample classification and accurate feature extraction. Specifically, HSIA-GAN is composed of generator and discriminator. The generator has three main functions. First, vertex graph and edge graph are constructed based on the input hypergraph to present the low-order relations. Second, the low-order structural information of hypergraph is extracted by the designed vertex convolution layers and edge convolution layers. Finally, the synthetic hypergraph is generated as the input of the discriminator. The discriminator can extract the high-order structural information directly from hypergraph through vertex-edge convolution, fuse the high and low-order structural information, and finalize the results through the full connection (FC) layers. Based on the data acquired from AD neuroimaging initiative, HSIA-GAN shows significant advantages in three classification tasks, and extracts discriminant features conducive to better disease classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tom哥完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
7ing完成签到,获得积分20
1秒前
乐乐应助点点采纳,获得10
1秒前
寒酥完成签到,获得积分10
2秒前
2秒前
sunshine完成签到,获得积分10
2秒前
2秒前
DXDXJX完成签到 ,获得积分0
2秒前
2秒前
3秒前
4秒前
4秒前
丘比特应助77采纳,获得10
5秒前
燃燃完成签到 ,获得积分10
5秒前
5秒前
123完成签到,获得积分20
5秒前
ei完成签到,获得积分10
5秒前
6秒前
能干夏波完成签到,获得积分10
6秒前
研友_8KKkb8发布了新的文献求助10
6秒前
Jeri发布了新的文献求助10
6秒前
7ing发布了新的文献求助10
6秒前
nn应助Lq采纳,获得10
6秒前
zikncy完成签到,获得积分10
6秒前
7秒前
科研通AI6应助富有的云龙采纳,获得10
7秒前
7秒前
吴剑宇完成签到,获得积分20
8秒前
happyAlice发布了新的文献求助10
8秒前
YaRu应助危机的元风采纳,获得10
8秒前
冷艳的紫雪完成签到,获得积分10
8秒前
123发布了新的文献求助10
8秒前
8秒前
Jasper应助积极寻梅采纳,获得10
8秒前
9秒前
清秀萤发布了新的文献求助10
9秒前
点点点点完成签到,获得积分10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587292
求助须知:如何正确求助?哪些是违规求助? 4670431
关于积分的说明 14782816
捐赠科研通 4622441
什么是DOI,文献DOI怎么找? 2531237
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066