Hypergraph Structural Information Aggregation Generative Adversarial Networks for Diagnosis and Pathogenetic Factors Identification of Alzheimer’s Disease With Imaging Genetic Data

超图 鉴别器 计算机科学 顶点(图论) 图形 发电机(电路理论) 模式识别(心理学) 人工智能 卷积(计算机科学) 理论计算机科学 数学 人工神经网络 组合数学 量子力学 电信 探测器 物理 功率(物理)
作者
Xia-an Bi,Yu Wang,Sheng Luo,Ke Chen,Zhaoxu Xing,Luyun Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7420-7434 被引量:7
标识
DOI:10.1109/tnnls.2022.3212700
摘要

Alzheimer's disease (AD) is a neurodegenerative disease with profound pathogenetic causes. Imaging genetic data analysis can provide comprehensive insights into its causes. To fully utilize the multi-level information in the data, this article proposes a hypergraph structural information aggregation model, and constructs a novel deep learning method named hypergraph structural information aggregation generative adversarial networks (HSIA-GANs) for the automatic sample classification and accurate feature extraction. Specifically, HSIA-GAN is composed of generator and discriminator. The generator has three main functions. First, vertex graph and edge graph are constructed based on the input hypergraph to present the low-order relations. Second, the low-order structural information of hypergraph is extracted by the designed vertex convolution layers and edge convolution layers. Finally, the synthetic hypergraph is generated as the input of the discriminator. The discriminator can extract the high-order structural information directly from hypergraph through vertex-edge convolution, fuse the high and low-order structural information, and finalize the results through the full connection (FC) layers. Based on the data acquired from AD neuroimaging initiative, HSIA-GAN shows significant advantages in three classification tasks, and extracts discriminant features conducive to better disease classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷伟宸发布了新的文献求助10
1秒前
健忘尔安完成签到,获得积分10
1秒前
外向的梦安完成签到,获得积分10
2秒前
脑洞疼应助微笑远航采纳,获得10
2秒前
弱水完成签到,获得积分10
4秒前
Fall发布了新的文献求助20
4秒前
shin0324发布了新的文献求助10
5秒前
5秒前
6秒前
pluto应助Nara2021采纳,获得10
7秒前
科研通AI5应助支雨泽采纳,获得10
7秒前
nadia完成签到,获得积分10
7秒前
8秒前
Akim应助win采纳,获得10
9秒前
熊一只完成签到,获得积分10
9秒前
9秒前
蕾蕾完成签到,获得积分20
10秒前
YZ发布了新的文献求助10
10秒前
10秒前
华仔应助北风采纳,获得10
11秒前
aabbcc完成签到 ,获得积分10
11秒前
请记住这个女人叫小美完成签到 ,获得积分20
12秒前
梦蝴蝶完成签到,获得积分10
12秒前
12秒前
13秒前
cdercder应助无辜澜采纳,获得10
13秒前
顾矜应助机智的璐璐采纳,获得10
13秒前
蕾蕾发布了新的文献求助10
14秒前
qqq完成签到 ,获得积分10
14秒前
李健应助中森明菜采纳,获得10
15秒前
科研小菜鸡完成签到,获得积分10
16秒前
16秒前
xiaoyuanyuan发布了新的文献求助10
17秒前
17秒前
阿虎发布了新的文献求助10
18秒前
小张吃不胖完成签到 ,获得积分10
18秒前
在水一方应助付理想采纳,获得10
18秒前
19秒前
v1008完成签到,获得积分10
19秒前
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734777
求助须知:如何正确求助?哪些是违规求助? 3278715
关于积分的说明 10010876
捐赠科研通 2995383
什么是DOI,文献DOI怎么找? 1643405
邀请新用户注册赠送积分活动 781153
科研通“疑难数据库(出版商)”最低求助积分说明 749285