清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Mobility-Aware Cooperative Caching in Vehicular Edge Computing Based on Asynchronous Federated and Deep Reinforcement Learning

计算机科学 隐藏物 强化学习 异步通信 上传 GSM演进的增强数据速率 车载自组网 计算机网络 方案(数学) 人工智能 分布式计算 无线自组网 无线 电信 万维网 数学分析 数学
作者
Qiong Wu,Yu Zhao,Qiang Fan,Pingyi Fan,Jiangzhou Wang,Cui Zhang
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:17 (1): 66-81 被引量:95
标识
DOI:10.1109/jstsp.2022.3221271
摘要

The vehicular edge computing (VEC) can cache contents in different RSUs at the network edge to support the real-time vehicular applications. In VEC, owing to the high-mobility characteristics of vehicles, it is necessary to cache the user data in advance and learn the most popular and interesting contents for vehicular users. Since user data usually contains privacy information, users are reluctant to share their data with others. To solve this problem, traditional federated learning (FL) needs to update the global model synchronously through aggregating all users' local models to protect users' privacy. However, vehicles may frequently drive out of the coverage area of the VEC before they achieve their local model trainings and thus the local models cannot be uploaded as expected, which would reduce the accuracy of the global model. In addition, the caching capacity of the local RSU is limited and the popular contents are diverse, thus the size of the predicted popular contents usually exceeds the cache capacity of the local RSU. Hence, the VEC should cache the predicted popular contents in different RSUs while considering the content transmission delay. In this paper, we consider the mobility of vehicles and propose a cooperative Caching scheme in the VEC based on Asynchronous Federated and deep Reinforcement learning (CAFR). We first consider the mobility of vehicles and propose an asynchronous FL algorithm to obtain an accurate global model, and then propose an algorithm to predict the popular contents based on the global model. In addition, we consider the mobility of vehicles and propose a deep reinforcement learning algorithm to obtain the optimal cooperative caching location for the predicted popular contents in order to optimize the content transmission delay. Extensive experimental results have demonstrated that the CAFR scheme outperforms other baseline caching schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
hugeyoung完成签到,获得积分10
11秒前
13秒前
23秒前
Arvin发布了新的文献求助10
28秒前
Arvin完成签到,获得积分10
33秒前
zhongu应助科研通管家采纳,获得10
43秒前
jlwang完成签到,获得积分10
56秒前
袁雪蓓完成签到 ,获得积分10
57秒前
xxf1002完成签到 ,获得积分10
1分钟前
kbcbwb2002完成签到,获得积分10
1分钟前
gobi完成签到 ,获得积分10
1分钟前
赵先生发布了新的文献求助10
1分钟前
1分钟前
zhdjj完成签到 ,获得积分10
1分钟前
浚稚完成签到 ,获得积分10
2分钟前
贪玩的访风完成签到 ,获得积分10
2分钟前
DJ_Tokyo完成签到,获得积分10
2分钟前
汉堡包应助Cistone采纳,获得10
2分钟前
CJ发布了新的文献求助20
2分钟前
3分钟前
bo完成签到 ,获得积分10
3分钟前
Perry完成签到,获得积分10
3分钟前
cyskdsn完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
tufei完成签到,获得积分10
4分钟前
白菜完成签到 ,获得积分10
4分钟前
时间煮雨我煮鱼完成签到,获得积分10
4分钟前
巴巴爸爸和他的孩子们完成签到,获得积分10
4分钟前
李友健完成签到 ,获得积分10
4分钟前
通科研完成签到 ,获得积分10
5分钟前
未完成完成签到,获得积分10
5分钟前
山山而川完成签到 ,获得积分10
5分钟前
6分钟前
Tiger完成签到,获得积分10
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460136
求助须知:如何正确求助?哪些是违规求助? 3054407
关于积分的说明 9042009
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505283
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694887