The Vehicle Routing Problem with Availability Profiles

车辆路径问题 计算机科学 布线(电子设计自动化) 水准点(测量) 运筹学 交付性能 服务提供商 订单(交换) 集合(抽象数据类型) 服务(商务) 工程类 业务 计算机网络 营销 工业工程 大地测量学 财务 程序设计语言 地理
作者
Stefan Voigt,M. Frank,Pirmin Fontaine,Heinrich Kühn
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (2): 531-551 被引量:9
标识
DOI:10.1287/trsc.2022.1182
摘要

In business-to-consumer (B2C) parcel delivery, the presence of the customer at the time of delivery is implicitly required in many cases. If the customer is not at home, the delivery fails—causing additional costs and efforts for the parcel service provider as well as inconvenience for the customer. Parcel service providers typically report high failed-delivery rates, as they have limited possibilities to arrange a delivery time with the recipient. We address the failed-delivery problem in B2C parcel delivery by considering customer-individual availability profiles (APs) that consist of a set of time windows, each associated with a probability that the delivery is successful if conducted in the respective time window. To assess the benefit of APs for delivery tour planning, we formulate the vehicle routing problem with availability profiles (VRPAP) as a mixed integer program, including the trade-off between transportation and failed-delivery costs. We provide analytical insights concerning the model’s cost-savings potential by determining lower and upper bounds. In order to solve larger instances, we develop a novel hybrid adaptive large neighborhood search (HALNS). The HALNS is highly adaptable and also able to solve related time-constrained vehicle routing problems (i.e., vehicle routing problems with hard, multiple, and soft time windows). We show its performance on these related benchmark instances and find a total of 20 new best-known solutions. We additionally conduct various experiments on self-generated VRPAP instances to generate managerial insights. In a case study using real-world data, despite little information on the APs, we were able to reduce failed deliveries by approximately 12% and overall costs by 5%. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.1182 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助TT采纳,获得10
刚刚
2秒前
康康完成签到,获得积分10
2秒前
Xv完成签到,获得积分0
2秒前
5秒前
5秒前
香蕉觅云应助zfzf0422采纳,获得10
5秒前
6秒前
6秒前
李健应助爱听歌的向日葵采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
烟花应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得80
7秒前
所所应助科研通管家采纳,获得20
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得30
8秒前
婷婷发布了新的文献求助10
8秒前
zzt完成签到,获得积分10
10秒前
张小汉发布了新的文献求助30
11秒前
二十四发布了新的文献求助10
11秒前
赘婿应助junzilan采纳,获得10
11秒前
FashionBoy应助勤恳的雨文采纳,获得10
11秒前
aaa完成签到,获得积分10
12秒前
13秒前
11111完成签到,获得积分20
14秒前
仔wang完成签到,获得积分10
14秒前
16秒前
忘羡222发布了新的文献求助20
16秒前
16秒前
温暖涫完成签到,获得积分10
18秒前
11111发布了新的文献求助10
18秒前
健忘的牛排完成签到,获得积分10
19秒前
wmmm完成签到,获得积分10
19秒前
Akim应助爱吃泡芙采纳,获得10
19秒前
老迟到的书雁完成签到 ,获得积分10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824