计算机科学
模糊逻辑
聚类分析
模糊聚类
数据挖掘
人工智能
数学
作者
Hong-Yu Wang,Jie-Sheng Wang,Guan Wang
标识
DOI:10.1016/j.ins.2022.11.010
摘要
As an unsupervised learning method, clustering does not need to know prior knowledge of the datasets in advance. How determining the optimal number of clusters becomes an important method to judge the quality of clustering results. For fuzzy clustering algorithms, the introduction to fuzzy partition makes it more consistent with the structure of real datasets than hard clustering algorithms. Therefore, it is necessary to carry out the research on the validity evaluation methods of fuzzy clustering. At present, the research on fuzzy clustering validity mainly focuses on the fuzzy clustering validity index (FCVI) and the combined fuzzy clustering validity evaluation method (CFCVE). From these two aspects, this paper reviews fuzzy clustering validity functions and combined fuzzy clustering validity evaluation methods. Then FCVI and CFCVE are discussed in details from different points on fuzzy clustering validity functions, and the research status and construction strategies of different fuzzy clustering validity evaluation methods are analyzed. The accuracy and stability of each fuzzy clustering validity evaluation method are analyzed through comparative experiments. Finally, the paper summarizes the shortcomings and advantages of the current research on fuzzy clustering validity and looks forward to the research direction and improved methods of the evaluation methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI