尖晶石
材料科学
电解质
电化学
阳极
阴极
过渡金属
锂(药物)
容量损失
电极
水溶液
金属
化学工程
氧化物
无机化学
化学
物理化学
冶金
催化作用
内分泌学
工程类
医学
生物化学
作者
Yi Pei,Qing Chen,Meiyu Wang,Pengjun Zhang,Qingyong Ren,Jiaqian Qin,Penghao Xiao,Song Li,Yu Chen,Wen Yin,Xin Tong,Liang Zhen,Peng Wang,Cheng‐Yan Xu
标识
DOI:10.1038/s41467-022-33927-0
摘要
The limited capacity of the positive electrode active material in non-aqueous rechargeable lithium-based batteries acts as a stumbling block for developing high-energy storage devices. Although lithium transition metal oxides are high-capacity electrochemical active materials, the structural instability at high cell voltages (e.g., >4.3 V) detrimentally affects the battery performance. Here, to circumvent this issue, we propose a Li1.46Ni0.32Mn1.2O4-x (0 < x < 4) material capable of forming a medium-entropy state spinel phase with partial cation disordering after initial delithiation. Via physicochemical measurements and theoretical calculations, we demonstrate the structural disorder in delithiated Li1.46Ni0.32Mn1.2O4-x, the direct shuttling of Li ions from octahedral sites to the spinel structure and the charge-compensation Mn3+/Mn4+ cationic redox mechanism after the initial delithiation. When tested in a coin cell configuration in combination with a Li metal anode and a LiPF6-based non-aqueous electrolyte, the Li1.46Ni0.32Mn1.2O4-x-based positive electrode enables a discharge capacity of 314.1 mA h g-1 at 100 mA g-1 with an average cell discharge voltage of about 3.2 V at 25 ± 5 °C, which results in a calculated initial specific energy of 999.3 Wh kg-1 (based on mass of positive electrode's active material).
科研通智能强力驱动
Strongly Powered by AbleSci AI