材料科学
阴极
电化学
锂(药物)
掺杂剂
兴奋剂
储能
电池(电)
氧化钴
氧化物
化学工程
电极
化学
冶金
光电子学
内分泌学
物理化学
功率(物理)
工程类
物理
医学
量子力学
作者
Ruizi Wang,Teng Li,Xixi Wu,Wenzhe Liu,Shasha Chen,Zikang Cai,Jiwei Song,Liangjie Yuan
标识
DOI:10.1016/j.jpowsour.2022.232289
摘要
As a popular cathode material in rechargeable lithium-ion batteries, lithium cobalt oxide (LiCoO 2 ) is required to achieve high-level safety with high energy density to meet the ever-increasing energy demand for energy storage devices. The method of lifting the operating voltage of LiCoO 2 to release more capacity for higher energy density usually causes severe structural instability at the deeply delithiated state, resulting in capacity fade and limited lifespan. Herein, we present a series of zinc, yttrium and terbium modified LiCoO 2 through solid-state reaction to tackle this long-term issue of structure destruction cycling at high voltages. Compared with the mediocre electrochemical performance of LiCoO 2 doped with single elements of Zn, Y and Tb, respectively, the dual-doped LiCoO 2 exhibits better structural stability and capacity retention at high voltages. Furthermore, the prepared Zn–Y–Tb ternary-doped LiCoO 2 exhibits excellent electrochemical capability with a discharge capacity of 185mAh/g after 100 cycles and capacity retention of 98% at 4.55 V. These multiple dopants synergistically maintain structural integrity after 300 cycles and effectively promote the cycle stability of lithium cobalt oxide cathode material at high voltages. • Zn, Y, and Tb are incorporated into LCO by facile solid phase reaction. • Multiple dopants suppress irreversible phase transition and structural collapse. • Tb element doping plays a dominating role in enhancing cycling stability. • Improving capacity retention of LCO from 66% to 98% after 100 cycles at 4.55V.
科研通智能强力驱动
Strongly Powered by AbleSci AI