Synergy effects of Tb/Y/Zn for structural stability of high-voltage LiCoO2 cathode material

材料科学 阴极 电化学 锂(药物) 掺杂剂 兴奋剂 储能 电池(电) 氧化钴 氧化物 化学工程 电极 化学 冶金 光电子学 内分泌学 物理化学 功率(物理) 工程类 物理 医学 量子力学
作者
Ruizi Wang,Teng Li,Xixi Wu,Wenzhe Liu,Shasha Chen,Zikang Cai,Jiwei Song,Liangjie Yuan
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:553: 232289-232289 被引量:16
标识
DOI:10.1016/j.jpowsour.2022.232289
摘要

As a popular cathode material in rechargeable lithium-ion batteries, lithium cobalt oxide (LiCoO 2 ) is required to achieve high-level safety with high energy density to meet the ever-increasing energy demand for energy storage devices. The method of lifting the operating voltage of LiCoO 2 to release more capacity for higher energy density usually causes severe structural instability at the deeply delithiated state, resulting in capacity fade and limited lifespan. Herein, we present a series of zinc, yttrium and terbium modified LiCoO 2 through solid-state reaction to tackle this long-term issue of structure destruction cycling at high voltages. Compared with the mediocre electrochemical performance of LiCoO 2 doped with single elements of Zn, Y and Tb, respectively, the dual-doped LiCoO 2 exhibits better structural stability and capacity retention at high voltages. Furthermore, the prepared Zn–Y–Tb ternary-doped LiCoO 2 exhibits excellent electrochemical capability with a discharge capacity of 185mAh/g after 100 cycles and capacity retention of 98% at 4.55 V. These multiple dopants synergistically maintain structural integrity after 300 cycles and effectively promote the cycle stability of lithium cobalt oxide cathode material at high voltages. • Zn, Y, and Tb are incorporated into LCO by facile solid phase reaction. • Multiple dopants suppress irreversible phase transition and structural collapse. • Tb element doping plays a dominating role in enhancing cycling stability. • Improving capacity retention of LCO from 66% to 98% after 100 cycles at 4.55V.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毕业比耶发布了新的文献求助10
刚刚
1秒前
1秒前
NexusExplorer应助sun采纳,获得10
1秒前
丘比特应助耍酷的海秋采纳,获得10
1秒前
孙家那个小谁完成签到,获得积分10
2秒前
好运气运气好完成签到,获得积分10
3秒前
踏实幻巧完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
英俊的铭应助安详的惜梦采纳,获得10
4秒前
7788关注了科研通微信公众号
4秒前
赵小美发布了新的文献求助10
4秒前
6秒前
6秒前
wydkyd发布了新的文献求助10
6秒前
犹豫千亦发布了新的文献求助10
6秒前
6秒前
7秒前
科研通AI2S应助Intro采纳,获得10
8秒前
hui发布了新的文献求助10
8秒前
小二郎应助Uan采纳,获得10
9秒前
9秒前
丘比特应助康康采纳,获得10
9秒前
佳丽完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
高贵振家发布了新的文献求助10
13秒前
summer star完成签到,获得积分10
13秒前
chenchen97422发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
zcn完成签到,获得积分20
15秒前
赘婿应助毕业比耶采纳,获得10
15秒前
16秒前
苹果衫发布了新的文献求助10
16秒前
16秒前
南城发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933