抗菌肽
管道(软件)
计算生物学
深度学习
抗菌剂
药物发现
计算机科学
化学
生物化学
生物
肽
人工智能
微生物学
程序设计语言
作者
Amir Pandi,David Adam,Amir S. Zare,Van Tuan Trinh,Stefan L. Schaefer,Marie Wiegand,Björn Klabunde,Elizaveta Bobkova,Manish Kushwaha,Yeganeh Foroughijabbari,Peter Braun,Christoph Spahn,Christian Preußer,Elke Pogge von Strandmann,Helge B. Bode,Heiner von Buttlar,Wilhelm Bertrams,Anna Lena Jung,Frank Abendroth,Bernd Schmeck,Gerhard Hummer,Olalla Vázquez,Tobias J. Erb
标识
DOI:10.1101/2022.11.19.517184
摘要
Abstract Bioactive peptides are key molecules in health and medicine. Deep learning holds a big promise for the discovery and design of bioactive peptides. Yet, suitable experimental approaches are required to validate candidates in high throughput and at low cost. Here, we established a cell- free protein synthesis (CFPS) pipeline for the rapid and inexpensive production of antimicrobial peptides (AMPs) directly from DNA templates. To validate our platform, we used deep learning to design thousands of AMPs de novo. Using computational methods, we prioritized 500 candidates that we produced and screened with our CFPS pipeline. We identified 30 functional AMPs, which we characterized further through molecular dynamics simulations, antimicrobial activity and toxicity. Notably, six de novo-AMPs feature broad-spectrum activity against multidrug-resistant pathogens and do not develop bacterial resistance. Our work demonstrates the potential of CFPS for production and testing of bioactive peptides within less than 24 hours and <10$ per screen.
科研通智能强力驱动
Strongly Powered by AbleSci AI