Theoretical analysis of cooling mechanism in high-speed ultrasonic vibration cutting interfaces

有限元法 冷却液 材料科学 振动 机械加工 机械工程 超声波传感器 刀具 刀具磨损 钛合金 流动可视化 计算机科学 流量(数学) 声学 结构工程 机械 复合材料 冶金 工程类 物理 合金
作者
Xiangyu Zhang,Zhenlong Peng,Dongyue Wang,Liangbao Liu
出处
期刊:International Journal of Thermal Sciences [Elsevier]
卷期号:184: 108033-108033
标识
DOI:10.1016/j.ijthermalsci.2022.108033
摘要

Cutting temperature has been found as the key factor for the tool life and surface quality during the machining of the difficult-to-cut materials (e.g., titanium and super alloys). To control the cutting temperature, a high-speed ultrasonic vibration cutting (HUVC) method has been proposed by existing research, in which the tool and workpiece have periodic separations and thus open the closed cutting interfaces compared with conventional cutting (CC). On that basis, the coolant can penetrate in the cutting interfaces which is quite different from the cooling methods for CC. Accordingly, in this study, Finite element method (FEM) and experiment methods were used to examine the cooling mechanism in the opened cutting interfaces based on the coolant state, which can guide further scientific research and engineering application of HUVC or even CC. At first, the expanded conventional model and the ultrasonic vibration model used to describe CC and HUVC were developed. Subsequently, FEM was used to examine the transient states of the velocity, pressure, temperature and synergy angle fields in the interfaces opening process. Next, ultrasonic vibration interfaces observation through high-speed visualization was conducted to verify the accuracy of the calculation results using the FEM. Lastly, the cutting experiments on titanium alloys were performed to verify the trends of the FEM results. As revealed by the results, ultrasonic vibration would lead to reversed flows by the negative pressure generated when the interfaces were opening. Subsequently, this reversed flow would lead to the formation of unstable thermal boundary layer, thus increasing the field synergic effect, which directly enhanced the heat flux and convection of the coolant in the opened cutting interfaces. • Cooling mechanism are revealed from the aspect of coolant state. • Coolant state is observed through high-speed visualization. • Unstable thermal boundary layer is the core factor of effective cooling. • Well field synergic effect is the reason of heat transfer enhancement by ultrasonic vibration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zzzhuan完成签到,获得积分20
刚刚
刚刚
JCX完成签到,获得积分20
刚刚
sky123发布了新的文献求助10
1秒前
LHD发布了新的文献求助10
1秒前
geogydeniel完成签到 ,获得积分10
1秒前
2秒前
2秒前
科研通AI2S应助俭朴的天薇采纳,获得10
2秒前
香蕉觅云应助一支蕉采纳,获得10
2秒前
xueerbx发布了新的文献求助10
2秒前
Zzzhuan发布了新的文献求助10
2秒前
2秒前
可爱的发布了新的文献求助10
3秒前
orixero应助海风采纳,获得10
3秒前
聪明蛋hhh完成签到,获得积分20
3秒前
ykiiii发布了新的文献求助30
3秒前
小白又鹏发布了新的文献求助10
4秒前
lzy完成签到 ,获得积分10
5秒前
5秒前
5秒前
赘婿应助科研工作者采纳,获得10
5秒前
和谐的小懒猪完成签到 ,获得积分10
5秒前
win发布了新的文献求助10
6秒前
6秒前
charles发布了新的文献求助10
6秒前
6秒前
Linsey发布了新的文献求助10
7秒前
KHZhang发布了新的文献求助10
7秒前
坚强亦丝应助司徒无剑采纳,获得10
7秒前
Tyranny完成签到 ,获得积分10
7秒前
12321完成签到,获得积分10
8秒前
8秒前
小逢逢完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
科目三应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134659
求助须知:如何正确求助?哪些是违规求助? 2785567
关于积分的说明 7773009
捐赠科研通 2441215
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825