Open-Source Data-Driven Cross-Domain Road Detection From Very High Resolution Remote Sensing Imagery

计算机科学 领域(数学分析) 人工智能 代表(政治) 空间分析 模式识别(心理学) 计算机视觉 数据挖掘 遥感 地理 数学 政治学 政治 数学分析 法学
作者
Xiaoyan Lu,Yanfei Zhong,Liangpei Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 6847-6862 被引量:8
标识
DOI:10.1109/tip.2022.3216481
摘要

High-precision road detection from very high resolution (VHR) remote sensing images has broad application value. However, the most advanced deep learning based methods often fail to identify roads when there is a distribution discrepancy between the training samples and test samples, due to their limited generalization ability. In this paper, to address this problem, an open-source data-driven domain-specific representation (OSM-DOER) framework is proposed for cross-domain road detection. On the one hand, as the spatial structure information of the source and target domains is similar, but the texture information is different, the domain-specific representation (DOER) framework is proposed, which not only aligns the distributions of the spatial structure information, but also learns the domain-specific texture information. Furthermore, in order to enhance the representation of the target domain data distribution, open-source and freely available OpenStreetMap (OSM) road centerline data are utilized to generate target domain samples, which are then used in the network training as the supervised information for the target domain. Finally, to verify the superiority of the proposed OSM-DOER framework, we conducted extensive experiments with the public SpaceNet and DeepGlobe road datasets, and large-scale road datasets from Birmingham in the UK and Shanghai in China. The experimental results demonstrate that the proposed OSM-DOER framework shows obvious advantages over the mainstream road detection methods, and the use of OSM road centerline data has great potential for the road detection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助十八采纳,获得10
刚刚
隐形曼青应助Ddnematode采纳,获得10
2秒前
3秒前
zg发布了新的文献求助10
4秒前
4秒前
ypeng完成签到,获得积分10
5秒前
Owen应助巧克力布朗尼采纳,获得30
6秒前
赘婿应助CRane采纳,获得10
8秒前
8秒前
8秒前
wanci应助迷你的心情采纳,获得10
8秒前
向语堂发布了新的文献求助10
8秒前
Cain应助幽芊细雨采纳,获得10
8秒前
9秒前
Dawn完成签到 ,获得积分10
9秒前
汉堡包应助访文采纳,获得10
12秒前
weiteman完成签到,获得积分10
13秒前
bluesky发布了新的文献求助10
14秒前
14秒前
xixihaha发布了新的文献求助10
15秒前
16秒前
life发布了新的文献求助10
18秒前
18秒前
yar给好运来的求助进行了留言
18秒前
知性的迎南关注了科研通微信公众号
19秒前
20秒前
21秒前
CRane发布了新的文献求助10
21秒前
我是老大应助wang5945采纳,获得10
23秒前
szy完成签到,获得积分10
23秒前
SmoonYK完成签到,获得积分10
24秒前
咚咚应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
田様应助科研通管家采纳,获得10
25秒前
852应助科研通管家采纳,获得10
25秒前
慕青应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
英姑应助科研通管家采纳,获得10
25秒前
华仔应助科研通管家采纳,获得10
25秒前
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316718
求助须知:如何正确求助?哪些是违规求助? 2948488
关于积分的说明 8540905
捐赠科研通 2624376
什么是DOI,文献DOI怎么找? 1436143
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651724