Charting C–C coupling pathways in electrochemical CO 2 reduction on Cu(111) using embedded correlated wavefunction theory

密度泛函理论 电化学 化学 波函数 计算化学 联轴节(管道) 材料科学 物理化学 物理 量子力学 电极 冶金
作者
Qing Zhao,John Mark P. Martirez,Emily A. Carter
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:119 (44): e2202931119-e2202931119 被引量:71
标识
DOI:10.1073/pnas.2202931119
摘要

The electrochemical CO 2 reduction reaction (CO 2 RR) powered by excess zero-carbon-emission electricity to produce especially multicarbon (C 2+ ) products could contribute to a carbon-neutral to carbon-negative economy. Foundational to the rational design of efficient, selective CO 2 RR electrocatalysts is mechanistic analysis of the best metal catalyst thus far identified, namely, copper (Cu), via quantum mechanical computations to complement experiments. Here, we apply embedded correlated wavefunction (ECW) theory, which regionally corrects the electron exchange-correlation error in density functional theory (DFT) approximations, to examine multiple C–C coupling steps involving adsorbed CO (*CO) and its hydrogenated derivatives on the most ubiquitous facet, Cu(111). We predict that two adsorbed hydrogenated CO species, either *COH or *CHO, are necessary precursors for C–C bond formation. The three kinetically feasible pathways involving these species yield all three possible products: *COH–CHO, *COH–*COH, and *OCH–*OCH. The most kinetically favorable path forms *COH–CHO. In contrast, standard DFT approximations arrive at qualitatively different conclusions, namely, that only *CO and *COH will prevail on the surface and their C–C coupling paths produce only *COH–*COH and *CO–*CO, with a preference for the first product. This work demonstrates the importance of applying qualitatively and quantitatively accurate quantum mechanical method to simulate electrochemistry in order ultimately to shed light on ways to enhance selectivity toward C 2+ product formation via CO 2 RR electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hhh完成签到,获得积分10
刚刚
NexusExplorer应助科研通管家采纳,获得30
刚刚
eon发布了新的文献求助20
刚刚
无花果应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
小哦嘿应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
平贝花应助科研通管家采纳,获得10
1秒前
1秒前
小哦嘿应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
平贝花应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
cc应助科研通管家采纳,获得30
2秒前
科研通AI6应助科研通管家采纳,获得20
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
共享精神应助缥缈傥采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
菌子锅发布了新的文献求助10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
走走发布了新的文献求助10
4秒前
7秒前
跳跃的血茗完成签到 ,获得积分10
7秒前
bkagyin应助棋士采纳,获得10
8秒前
8秒前
顾矜应助典雅的悟空采纳,获得10
8秒前
威fly完成签到,获得积分10
11秒前
缥缈傥发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
隐形之玉完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176