Modeling of Real Time Traffic Flow Monitoring System Using Deep Learning and Unmanned Aerial Vehicles

流量(计算机网络) 计算机科学 实时计算 智能交通系统 卷积神经网络 残余物 深度学习 浮动车数据 模拟 人工智能 运输工程 交通拥挤 工程类 计算机安全 算法
作者
Sachin Upadhye,S. Neelakandan,K. Thangaraj,D. Vijendra Babu,N. Arulkumar,Kashif Qureshi
出处
期刊:Journal of mobile multimedia [River Publishers]
被引量:1
标识
DOI:10.13052/jmm1550-4646.1926
摘要

Recently, intelligent video surveillance technologies using unmanned aerial vehicles (UAVs) have been considerably increased in the transportation sector. Real time collection of traffic videos by the use of UAVs finds useful to monitor the traffic flow and road conditions. Since traffic jams have become common in urban areas, it is needed to design artificial intelligence (AI) based recognition techniques to attain effective traffic flow monitoring. Besides, the traffic flow monitoring system can assist the traffic managers to start efficient dispersal actions. Therefore, this study designs a real time traffic flow monitoring system using deep learning (DL) and UAVs, called RTTFM-DL. The proposed RTTFM-DL technique aims to detect vehicles, count vehicles, estimate speed and determine traffic flow. In addition, an efficient vehicle detection model is proposed by the use of Faster Regional Convolutional Neural Network (Faster RCNN) with Residual Network (ResNet). Also, a detection line based vehicle counting approach is designed, which is based on overlap ratio. Finally, traffic flow monitoring takes place based on the estimated vehicle count and vehicle speed. In order to guarantee the effectual performance of the RTTFM-DL technique, a series of experimental analyses take place and the results are examined under varying aspects. The experimental outcomes highlighted the betterment of the RTTFM-DL technique over the recent techniques. The RTTFM-DL technique has gained improved outcomes with a higher accuracy of 0.975.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助KASTTTTTT采纳,获得10
刚刚
酷波er应助唠叨的可燕采纳,获得10
刚刚
小k发布了新的文献求助10
刚刚
虚幻天空发布了新的文献求助10
1秒前
珍狗发布了新的文献求助10
1秒前
阳光的电脑完成签到,获得积分10
2秒前
小马甲应助彭彭采纳,获得10
2秒前
西木发布了新的文献求助10
2秒前
小_n发布了新的文献求助30
2秒前
su发布了新的文献求助30
3秒前
3秒前
故意的鼠标完成签到,获得积分10
5秒前
某某某完成签到,获得积分0
5秒前
lixiang发布了新的文献求助10
7秒前
7秒前
年轻板凳完成签到,获得积分10
7秒前
AC赵先生发布了新的文献求助10
7秒前
8秒前
共享精神应助某某某采纳,获得10
9秒前
9秒前
FashionBoy应助cms采纳,获得30
9秒前
缓慢的海云完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
吡啶应助nj采纳,获得20
12秒前
西木完成签到,获得积分10
12秒前
天天快乐应助宓不评采纳,获得10
12秒前
12秒前
大个应助我要发十篇sci采纳,获得10
12秒前
wh发布了新的文献求助10
12秒前
whn完成签到,获得积分10
12秒前
13秒前
zhangJL驳回了Yziii应助
13秒前
冷静的莞发布了新的文献求助10
13秒前
15秒前
haning发布了新的文献求助10
15秒前
敏感的天空完成签到,获得积分10
15秒前
凉兮发布了新的文献求助10
15秒前
老橡树发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157139
求助须知:如何正确求助?哪些是违规求助? 2808445
关于积分的说明 7877659
捐赠科研通 2466978
什么是DOI,文献DOI怎么找? 1313089
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919