Modeling of Real Time Traffic Flow Monitoring System Using Deep Learning and Unmanned Aerial Vehicles

流量(计算机网络) 计算机科学 实时计算 智能交通系统 卷积神经网络 残余物 深度学习 浮动车数据 模拟 人工智能 运输工程 交通拥挤 工程类 计算机安全 算法
作者
Sachin Upadhye,S. Neelakandan,K. Thangaraj,D. Vijendra Babu,N. Arulkumar,Kashif Qureshi
出处
期刊:Journal of mobile multimedia [River Publishers]
被引量:1
标识
DOI:10.13052/jmm1550-4646.1926
摘要

Recently, intelligent video surveillance technologies using unmanned aerial vehicles (UAVs) have been considerably increased in the transportation sector. Real time collection of traffic videos by the use of UAVs finds useful to monitor the traffic flow and road conditions. Since traffic jams have become common in urban areas, it is needed to design artificial intelligence (AI) based recognition techniques to attain effective traffic flow monitoring. Besides, the traffic flow monitoring system can assist the traffic managers to start efficient dispersal actions. Therefore, this study designs a real time traffic flow monitoring system using deep learning (DL) and UAVs, called RTTFM-DL. The proposed RTTFM-DL technique aims to detect vehicles, count vehicles, estimate speed and determine traffic flow. In addition, an efficient vehicle detection model is proposed by the use of Faster Regional Convolutional Neural Network (Faster RCNN) with Residual Network (ResNet). Also, a detection line based vehicle counting approach is designed, which is based on overlap ratio. Finally, traffic flow monitoring takes place based on the estimated vehicle count and vehicle speed. In order to guarantee the effectual performance of the RTTFM-DL technique, a series of experimental analyses take place and the results are examined under varying aspects. The experimental outcomes highlighted the betterment of the RTTFM-DL technique over the recent techniques. The RTTFM-DL technique has gained improved outcomes with a higher accuracy of 0.975.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐新新完成签到,获得积分20
2秒前
热心晓丝发布了新的文献求助10
3秒前
4秒前
汉堡包应助zzzzzz采纳,获得10
4秒前
5秒前
5秒前
唐新新发布了新的文献求助10
5秒前
sunny850完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
Antheali应助科研通管家采纳,获得10
8秒前
唐泽雪穗应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
10秒前
sunny850发布了新的文献求助10
10秒前
11秒前
11秒前
坚定芷烟完成签到,获得积分10
12秒前
飞飞猪完成签到,获得积分20
13秒前
kkz完成签到,获得积分10
13秒前
13秒前
拉圈最菜妮厨完成签到,获得积分10
14秒前
14秒前
杨丹完成签到 ,获得积分20
15秒前
15秒前
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
somebodyzou发布了新的文献求助30
18秒前
kkz发布了新的文献求助10
18秒前
吴世勋fans发布了新的文献求助30
19秒前
蛋蛋完成签到 ,获得积分10
20秒前
陈秋红发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991289
求助须知:如何正确求助?哪些是违规求助? 4239820
关于积分的说明 13208366
捐赠科研通 4034700
什么是DOI,文献DOI怎么找? 2207462
邀请新用户注册赠送积分活动 1218448
关于科研通互助平台的介绍 1136900