Modeling of Real Time Traffic Flow Monitoring System Using Deep Learning and Unmanned Aerial Vehicles

流量(计算机网络) 计算机科学 实时计算 智能交通系统 卷积神经网络 残余物 深度学习 浮动车数据 模拟 人工智能 运输工程 交通拥挤 工程类 计算机安全 算法
作者
Sachin Upadhye,S. Neelakandan,K. Thangaraj,D. Vijendra Babu,N. Arulkumar,Kashif Qureshi
出处
期刊:Journal of mobile multimedia [River Publishers]
被引量:1
标识
DOI:10.13052/jmm1550-4646.1926
摘要

Recently, intelligent video surveillance technologies using unmanned aerial vehicles (UAVs) have been considerably increased in the transportation sector. Real time collection of traffic videos by the use of UAVs finds useful to monitor the traffic flow and road conditions. Since traffic jams have become common in urban areas, it is needed to design artificial intelligence (AI) based recognition techniques to attain effective traffic flow monitoring. Besides, the traffic flow monitoring system can assist the traffic managers to start efficient dispersal actions. Therefore, this study designs a real time traffic flow monitoring system using deep learning (DL) and UAVs, called RTTFM-DL. The proposed RTTFM-DL technique aims to detect vehicles, count vehicles, estimate speed and determine traffic flow. In addition, an efficient vehicle detection model is proposed by the use of Faster Regional Convolutional Neural Network (Faster RCNN) with Residual Network (ResNet). Also, a detection line based vehicle counting approach is designed, which is based on overlap ratio. Finally, traffic flow monitoring takes place based on the estimated vehicle count and vehicle speed. In order to guarantee the effectual performance of the RTTFM-DL technique, a series of experimental analyses take place and the results are examined under varying aspects. The experimental outcomes highlighted the betterment of the RTTFM-DL technique over the recent techniques. The RTTFM-DL technique has gained improved outcomes with a higher accuracy of 0.975.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
orixero应助唐晓秦采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
reds应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
1秒前
3秒前
3秒前
文刀武书生完成签到,获得积分10
4秒前
Lucas应助纯真忆安采纳,获得10
4秒前
研友_VZG7GZ应助123采纳,获得20
4秒前
ZMH完成签到,获得积分10
5秒前
jiejie发布了新的文献求助10
5秒前
6秒前
超神完成签到,获得积分0
6秒前
小小发布了新的文献求助10
10秒前
十二完成签到,获得积分10
10秒前
青柠檬完成签到,获得积分20
11秒前
12秒前
JamesPei应助辛夷采纳,获得10
13秒前
14秒前
14秒前
萂昕完成签到 ,获得积分10
17秒前
纯真忆安发布了新的文献求助10
17秒前
善学以致用应助啦啦康采纳,获得10
18秒前
南明发布了新的文献求助10
19秒前
xjy完成签到,获得积分10
20秒前
生动元蝶发布了新的文献求助10
20秒前
wanci应助lf-leo采纳,获得10
20秒前
jiejie完成签到,获得积分10
26秒前
27秒前
子苓完成签到 ,获得积分10
27秒前
28秒前
123完成签到,获得积分20
28秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959309
求助须知:如何正确求助?哪些是违规求助? 3505589
关于积分的说明 11124738
捐赠科研通 3237345
什么是DOI,文献DOI怎么找? 1789116
邀请新用户注册赠送积分活动 871544
科研通“疑难数据库(出版商)”最低求助积分说明 802844