Spatial–contextual variational autoencoder with attention correction for anomaly detection in retinal OCT images

异常检测 自编码 计算机科学 异常(物理) 人工智能 模式识别(心理学) 公制(单位) 特征(语言学) 计算机视觉 深度学习 物理 运营管理 凝聚态物理 语言学 哲学 经济
作者
Xueying Zhou,Sijie Niu,Xiaohui Li,Hui Zhao,Xizhan Gao,Tingting Liu,Jiwen Dong
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106328-106328 被引量:8
标识
DOI:10.1016/j.compbiomed.2022.106328
摘要

Anomaly detection refers to leveraging only normal data to train a model for identifying unseen abnormal cases, which is extensively studied in various fields. Most previous methods are based on reconstruction models, and use anomaly score calculated by the reconstruction error as the metric to tackle anomaly detection. However, these methods just employ single constraint on latent space to construct reconstruction model, resulting in limited performance in anomaly detection. To address this problem, we propose a Spatial-Contextual Variational Autoencoder with Attention Correction for anomaly detection in retinal OCT images. Specifically, we first propose a self-supervised segmentation network to extract retinal regions, which can effectively eliminate interference of background regions. Next, by introducing both multi-dimensional and one-dimensional latent space, our proposed framework can then learn the spatial and contextual manifolds of normal images, which is conducive to enlarging the difference between reconstruction errors of normal images and those of abnormal ones. Furthermore, an ablation-based method is proposed to localize anomalous regions by computing the importance of feature maps, which is used to correct anomaly score calculated by reconstruction error. Finally, a novel anomaly score is constructed to separate the abnormal images from the normal ones. Extensive experiments on two retinal OCT datasets are conducted to evaluate our proposed method, and the experimental results demonstrate the effectiveness of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiajia发布了新的文献求助10
2秒前
2秒前
4秒前
科研通AI2S应助哈哈采纳,获得10
5秒前
yumeng发布了新的文献求助10
7秒前
嘛呱完成签到,获得积分20
8秒前
温柔书琴关注了科研通微信公众号
9秒前
11秒前
吗喽完成签到,获得积分10
11秒前
12秒前
yi完成签到,获得积分10
12秒前
Pony发布了新的文献求助10
18秒前
ling完成签到,获得积分10
19秒前
柴胡完成签到,获得积分10
19秒前
JamesPei应助jiajia采纳,获得10
19秒前
ANEWKID完成签到,获得积分10
20秒前
香菜大姐完成签到,获得积分10
24秒前
Hello应助flysky120采纳,获得10
24秒前
kbcbwb2002完成签到,获得积分10
27秒前
张世奇发布了新的文献求助10
31秒前
33秒前
11发布了新的文献求助10
36秒前
36秒前
华仔应助酸菜采纳,获得10
37秒前
39秒前
AliHamid发布了新的文献求助10
39秒前
40秒前
41秒前
42秒前
43秒前
CSS发布了新的文献求助30
47秒前
47秒前
ling发布了新的文献求助10
47秒前
哦_哦发布了新的文献求助10
47秒前
翯翯完成签到,获得积分10
49秒前
琉璃非离完成签到,获得积分10
49秒前
笙声慢完成签到,获得积分20
54秒前
54秒前
orixero应助翯翯采纳,获得10
55秒前
11发布了新的文献求助10
55秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673449
求助须知:如何正确求助?哪些是违规求助? 3229111
关于积分的说明 9784078
捐赠科研通 2939630
什么是DOI,文献DOI怎么找? 1611183
邀请新用户注册赠送积分活动 760809
科研通“疑难数据库(出版商)”最低求助积分说明 736290