Spatial–contextual variational autoencoder with attention correction for anomaly detection in retinal OCT images

异常检测 自编码 计算机科学 异常(物理) 人工智能 模式识别(心理学) 公制(单位) 特征(语言学) 计算机视觉 深度学习 物理 运营管理 凝聚态物理 语言学 哲学 经济
作者
Xueying Zhou,Sijie Niu,Xiaohui Li,Hui Zhao,Xizhan Gao,Tingting Liu,Jiwen Dong
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106328-106328 被引量:8
标识
DOI:10.1016/j.compbiomed.2022.106328
摘要

Anomaly detection refers to leveraging only normal data to train a model for identifying unseen abnormal cases, which is extensively studied in various fields. Most previous methods are based on reconstruction models, and use anomaly score calculated by the reconstruction error as the metric to tackle anomaly detection. However, these methods just employ single constraint on latent space to construct reconstruction model, resulting in limited performance in anomaly detection. To address this problem, we propose a Spatial-Contextual Variational Autoencoder with Attention Correction for anomaly detection in retinal OCT images. Specifically, we first propose a self-supervised segmentation network to extract retinal regions, which can effectively eliminate interference of background regions. Next, by introducing both multi-dimensional and one-dimensional latent space, our proposed framework can then learn the spatial and contextual manifolds of normal images, which is conducive to enlarging the difference between reconstruction errors of normal images and those of abnormal ones. Furthermore, an ablation-based method is proposed to localize anomalous regions by computing the importance of feature maps, which is used to correct anomaly score calculated by reconstruction error. Finally, a novel anomaly score is constructed to separate the abnormal images from the normal ones. Extensive experiments on two retinal OCT datasets are conducted to evaluate our proposed method, and the experimental results demonstrate the effectiveness of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爱笑的傲薇完成签到,获得积分10
2秒前
alwry发布了新的文献求助10
2秒前
完美世界应助wa采纳,获得10
2秒前
Lucas应助星辰采纳,获得10
4秒前
5秒前
Wy完成签到,获得积分10
5秒前
jiahuo1完成签到,获得积分10
6秒前
英俊绝义发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
yaoyao完成签到,获得积分10
9秒前
Rondab应助suha采纳,获得10
9秒前
10秒前
陶佳仪完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
da发布了新的文献求助10
14秒前
可爱得喵喵叫的中华卷柏完成签到 ,获得积分10
14秒前
14秒前
坦率的匪应助英俊绝义采纳,获得10
15秒前
wa发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
情怀应助陈龙采纳,获得10
17秒前
18秒前
Owen应助流萤采纳,获得10
18秒前
所所应助阿旭采纳,获得10
19秒前
Han发布了新的文献求助10
22秒前
NexusExplorer应助STAN采纳,获得10
22秒前
Sienna发布了新的文献求助10
23秒前
yaoyao发布了新的文献求助10
23秒前
24秒前
25秒前
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126