Service Is Good, Very Good or Excellent? Towards Aspect Based Sentiment Intensity Analysis

计算机科学 情绪分析 水准点(测量) 任务(项目管理) 判决 服务(商务) 学期 自然语言处理 人工智能 过程(计算) 词(群论) 自然语言 操作系统 经济 哲学 经济 语言学 管理 地理 大地测量学
作者
Mamta Mamta,Asif Ekbal
出处
期刊:Lecture Notes in Computer Science 卷期号:: 685-700 被引量:2
标识
DOI:10.1007/978-3-031-28244-7_43
摘要

Aspect-based sentiment analysis (ABSA) is a fast-growing research area in natural language processing (NLP) that provides more fine-grained information, considering the aspect as the fundamental item. The ABSA primarily measures sentiment towards a given aspect, but does not quantify the intensity of that sentiment. For example, intensity of positive sentiment expressed for service in service is good is comparatively weaker than in service is excellent. Thus, aspect sentiment intensity will assist the stakeholders in mining user preferences more precisely. Our current work introduces a novel task called aspect based sentiment intensity analysis (ABSIA) that facilitates research in this direction. An annotated review corpus for ABSIA is introduced by labelling the benchmark SemEval ABSA restaurant dataset with the seven (7) classes in a semi-supervised way. To demonstrate the effective usage of corpus, we cast ABSIA as a natural language generation task, where a natural sentence is generated to represent the output in order to utilize the pre-trained language models effectively. Further, we propose an effective technique for the joint learning where ABSA is used as a secondary task to assist the primary task, i.e. ABSIA. An improvement of 2 points is observed over the single task intensity model. To explain the actual decision process of the proposed framework, model explainability technique is employed that extracts the important opinion terms responsible for generation (Source code and the dataset has been made available on https://www.iitp.ac.in/~ai-nlp-ml/resources.html#ABSIA , https://github.com/20118/ABSIA )
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
R沫完成签到,获得积分10
1秒前
姁姁完成签到,获得积分10
1秒前
2秒前
3秒前
小二郎应助邱近实采纳,获得10
3秒前
李岩完成签到,获得积分20
3秒前
坦率灵槐发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
orixero应助等待的之瑶采纳,获得30
7秒前
英吉利25发布了新的文献求助10
7秒前
故槿发布了新的文献求助10
7秒前
7秒前
yy关注了科研通微信公众号
8秒前
所所应助sy采纳,获得10
8秒前
9秒前
9秒前
花花发布了新的文献求助10
9秒前
壮观乘云发布了新的文献求助10
10秒前
10秒前
万能图书馆应助哈哈哈哈采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
星河发布了新的文献求助10
11秒前
12秒前
12秒前
林珍发布了新的文献求助10
13秒前
嘿嘿嘿完成签到 ,获得积分10
13秒前
贤惠的又菡完成签到 ,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939