Service Is Good, Very Good or Excellent? Towards Aspect Based Sentiment Intensity Analysis

计算机科学 情绪分析 水准点(测量) 任务(项目管理) 判决 服务(商务) 学期 自然语言处理 人工智能 过程(计算) 词(群论) 自然语言 操作系统 经济 哲学 经济 语言学 管理 地理 大地测量学
作者
Mamta Mamta,Asif Ekbal
出处
期刊:Lecture Notes in Computer Science 卷期号:: 685-700 被引量:2
标识
DOI:10.1007/978-3-031-28244-7_43
摘要

Aspect-based sentiment analysis (ABSA) is a fast-growing research area in natural language processing (NLP) that provides more fine-grained information, considering the aspect as the fundamental item. The ABSA primarily measures sentiment towards a given aspect, but does not quantify the intensity of that sentiment. For example, intensity of positive sentiment expressed for service in service is good is comparatively weaker than in service is excellent. Thus, aspect sentiment intensity will assist the stakeholders in mining user preferences more precisely. Our current work introduces a novel task called aspect based sentiment intensity analysis (ABSIA) that facilitates research in this direction. An annotated review corpus for ABSIA is introduced by labelling the benchmark SemEval ABSA restaurant dataset with the seven (7) classes in a semi-supervised way. To demonstrate the effective usage of corpus, we cast ABSIA as a natural language generation task, where a natural sentence is generated to represent the output in order to utilize the pre-trained language models effectively. Further, we propose an effective technique for the joint learning where ABSA is used as a secondary task to assist the primary task, i.e. ABSIA. An improvement of 2 points is observed over the single task intensity model. To explain the actual decision process of the proposed framework, model explainability technique is employed that extracts the important opinion terms responsible for generation (Source code and the dataset has been made available on https://www.iitp.ac.in/~ai-nlp-ml/resources.html#ABSIA , https://github.com/20118/ABSIA )
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
舒适电源应助iiglu采纳,获得10
刚刚
刚刚
喜汁郎发布了新的文献求助10
1秒前
1秒前
秋秋完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
马明旋完成签到,获得积分20
3秒前
浮游应助菜鸟采纳,获得10
3秒前
bkagyin应助XXaaxxxx采纳,获得10
3秒前
4秒前
lyx1997发布了新的文献求助10
4秒前
我爱科研发布了新的文献求助10
5秒前
qianzi完成签到 ,获得积分10
5秒前
5秒前
口口完成签到,获得积分10
5秒前
香蕉觅云应助mei采纳,获得10
6秒前
xinzezoe发布了新的文献求助10
6秒前
哎嘿发布了新的文献求助10
6秒前
阿瓜发布了新的文献求助10
6秒前
奋斗的冬瓜完成签到,获得积分20
6秒前
谈笑间发布了新的文献求助10
6秒前
6秒前
完美世界应助梅天豪采纳,获得10
6秒前
gbtj123发布了新的文献求助10
6秒前
Wianiu完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
清爽冰露发布了新的文献求助10
9秒前
廿一雨发布了新的文献求助10
9秒前
一目发布了新的文献求助10
9秒前
9秒前
Paranoid完成签到 ,获得积分10
9秒前
9秒前
我爱科研完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430157
求助须知:如何正确求助?哪些是违规求助? 4543397
关于积分的说明 14186899
捐赠科研通 4461523
什么是DOI,文献DOI怎么找? 2446207
邀请新用户注册赠送积分活动 1437454
关于科研通互助平台的介绍 1414381