Service Is Good, Very Good or Excellent? Towards Aspect Based Sentiment Intensity Analysis

计算机科学 情绪分析 水准点(测量) 任务(项目管理) 判决 服务(商务) 学期 自然语言处理 人工智能 过程(计算) 词(群论) 自然语言 操作系统 经济 哲学 经济 语言学 管理 地理 大地测量学
作者
Mamta Mamta,Asif Ekbal
出处
期刊:Lecture Notes in Computer Science 卷期号:: 685-700 被引量:2
标识
DOI:10.1007/978-3-031-28244-7_43
摘要

Aspect-based sentiment analysis (ABSA) is a fast-growing research area in natural language processing (NLP) that provides more fine-grained information, considering the aspect as the fundamental item. The ABSA primarily measures sentiment towards a given aspect, but does not quantify the intensity of that sentiment. For example, intensity of positive sentiment expressed for service in service is good is comparatively weaker than in service is excellent. Thus, aspect sentiment intensity will assist the stakeholders in mining user preferences more precisely. Our current work introduces a novel task called aspect based sentiment intensity analysis (ABSIA) that facilitates research in this direction. An annotated review corpus for ABSIA is introduced by labelling the benchmark SemEval ABSA restaurant dataset with the seven (7) classes in a semi-supervised way. To demonstrate the effective usage of corpus, we cast ABSIA as a natural language generation task, where a natural sentence is generated to represent the output in order to utilize the pre-trained language models effectively. Further, we propose an effective technique for the joint learning where ABSA is used as a secondary task to assist the primary task, i.e. ABSIA. An improvement of 2 points is observed over the single task intensity model. To explain the actual decision process of the proposed framework, model explainability technique is employed that extracts the important opinion terms responsible for generation (Source code and the dataset has been made available on https://www.iitp.ac.in/~ai-nlp-ml/resources.html#ABSIA , https://github.com/20118/ABSIA )
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bob发布了新的文献求助10
刚刚
刚刚
科研小白关注了科研通微信公众号
2秒前
柯英钊完成签到,获得积分10
4秒前
aijians完成签到,获得积分10
4秒前
4秒前
lMiraclel完成签到,获得积分20
4秒前
5秒前
6秒前
Zyc发布了新的文献求助10
7秒前
隐形曼青应助唐棠采纳,获得10
7秒前
Nico发布了新的文献求助10
7秒前
9秒前
9秒前
9秒前
10秒前
Diaory2023完成签到 ,获得积分0
10秒前
古或今完成签到,获得积分10
13秒前
完美世界应助老财萌萌哒采纳,获得10
14秒前
活力的小蜜蜂完成签到,获得积分10
14秒前
楼明轩发布了新的文献求助10
16秒前
狂野的雨灵完成签到,获得积分10
16秒前
朱冰洁发布了新的文献求助20
17秒前
传奇3应助ylyla采纳,获得10
17秒前
现代的擎苍完成签到,获得积分10
18秒前
19秒前
qqs发布了新的文献求助10
19秒前
英俊的铭应助榴莲麦旋风采纳,获得10
19秒前
天真傲之完成签到,获得积分10
21秒前
22秒前
王思琦发布了新的文献求助10
22秒前
xiao茗发布了新的文献求助10
23秒前
七七完成签到,获得积分10
23秒前
24秒前
yixiaoqi完成签到,获得积分10
24秒前
25秒前
25秒前
Bob完成签到,获得积分10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得30
25秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457257
求助须知:如何正确求助?哪些是违规求助? 4563784
关于积分的说明 14291191
捐赠科研通 4488397
什么是DOI,文献DOI怎么找? 2458513
邀请新用户注册赠送积分活动 1448564
关于科研通互助平台的介绍 1424214