VLTENet: A Deep-Learning-Based Vertebra Localization and Tilt Estimation Network for Automatic Cobb Angle Estimation

人工智能 计算机科学 柯布角 科布 卷积神经网络 椎骨 分割 深度学习 脊柱侧凸 模式识别(心理学) 倾斜(摄像机) 计算机视觉 特征(语言学) 机器学习 数学 医学 古生物学 外科 几何学 生物 遗传学 语言学 哲学
作者
Lulin Zou,Lijun Guo,Rong Zhang,Lixin Ni,Zhenzuo Chen,Xiuchao He,Jianhua Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 3002-3013 被引量:8
标识
DOI:10.1109/jbhi.2023.3258361
摘要

Scoliosis diagnosis and assessment rely upon Cobb angle estimation from X-ray images of the spine. Recently, automated scoliosis assessment has been greatly improved using deep learning methods. However, in such methods, the Cobb angle is usually predicted based on regression models that don't account for information of the spine structure. Alternatively, the Cobb angle can be estimated indirectly through landmark-detection and vertebra-segmentation, but this approach is still highly sensitive to small detection and segmentation errors. This paper proposes a novel deep-learning architecture, called the vertebra localization and tilt estimation network (VLTENet). This network boosts the Cobb angle estimation accuracy through employing vertebra localization and tilt estimation as network prediction goals. In particular, the VLTENet model innovatively combines a deep high-resolution network (HRNet) and a fully-convolutional U-Net architecture for capturing long-range contextual information, the overall structure, and local details in spinal X-ray images. A feature fusion channel attention (FFCA) module is also proposed to selectively emphasize more informative features and suppress less informative ones. In addition, a joint spine loss function (JS-Loss) is designed to account for the spine shape and other spatial constraints, so that the network focuses more on spine-related regions and ignore irrelevant background regions. Finally, we propose a new Cobb angle estimation method conforms with the clinical Cobb angle calculation guidelines, and produces accurate estimates for different types of scoliosis. Extensive experiments on the publically-available AASCE challenge dataset and on an in-house dataset demonstrated the superiority of our method for the task of automatic assessment of scoliosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王森发布了新的文献求助10
刚刚
1秒前
tigger完成签到,获得积分10
3秒前
整齐妙梦发布了新的文献求助10
4秒前
田様应助稳重向南采纳,获得10
6秒前
7秒前
7秒前
YaHe发布了新的文献求助10
7秒前
科研通AI2S应助张宝采纳,获得10
8秒前
9秒前
cauliflower发布了新的文献求助10
12秒前
13秒前
遥远的尧应助科研通管家采纳,获得10
13秒前
tianzml0应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得20
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
成成发布了新的文献求助30
15秒前
15秒前
李健应助一指流沙采纳,获得10
15秒前
16秒前
青栀完成签到,获得积分20
19秒前
李小狼不浪完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164351
求助须知:如何正确求助?哪些是违规求助? 2815193
关于积分的说明 7908079
捐赠科研通 2474802
什么是DOI,文献DOI怎么找? 1317676
科研通“疑难数据库(出版商)”最低求助积分说明 631925
版权声明 602234