VLTENet: A Deep-Learning-Based Vertebra Localization and Tilt Estimation Network for Automatic Cobb Angle Estimation

人工智能 计算机科学 柯布角 科布 卷积神经网络 椎骨 分割 深度学习 脊柱侧凸 模式识别(心理学) 倾斜(摄像机) 计算机视觉 特征(语言学) 机器学习 数学 哲学 外科 古生物学 生物 医学 遗传学 语言学 几何学
作者
Lulin Zou,Lijun Guo,Rong Zhang,Lixin Ni,Zhenzuo Chen,Xiuchao He,Jianhua Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 3002-3013 被引量:14
标识
DOI:10.1109/jbhi.2023.3258361
摘要

Scoliosis diagnosis and assessment rely upon Cobb angle estimation from X-ray images of the spine. Recently, automated scoliosis assessment has been greatly improved using deep learning methods. However, in such methods, the Cobb angle is usually predicted based on regression models that don't account for information of the spine structure. Alternatively, the Cobb angle can be estimated indirectly through landmark-detection and vertebra-segmentation, but this approach is still highly sensitive to small detection and segmentation errors. This paper proposes a novel deep-learning architecture, called the vertebra localization and tilt estimation network (VLTENet). This network boosts the Cobb angle estimation accuracy through employing vertebra localization and tilt estimation as network prediction goals. In particular, the VLTENet model innovatively combines a deep high-resolution network (HRNet) and a fully-convolutional U-Net architecture for capturing long-range contextual information, the overall structure, and local details in spinal X-ray images. A feature fusion channel attention (FFCA) module is also proposed to selectively emphasize more informative features and suppress less informative ones. In addition, a joint spine loss function (JS-Loss) is designed to account for the spine shape and other spatial constraints, so that the network focuses more on spine-related regions and ignore irrelevant background regions. Finally, we propose a new Cobb angle estimation method conforms with the clinical Cobb angle calculation guidelines, and produces accurate estimates for different types of scoliosis. Extensive experiments on the publically-available AASCE challenge dataset and on an in-house dataset demonstrated the superiority of our method for the task of automatic assessment of scoliosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
青岚完成签到,获得积分10
1秒前
2秒前
SciGPT应助傻傻的黑米采纳,获得10
2秒前
HarUkii发布了新的文献求助10
4秒前
4秒前
核桃发布了新的文献求助10
5秒前
时间不多咯完成签到,获得积分20
5秒前
lune发布了新的文献求助20
6秒前
小易发布了新的文献求助10
6秒前
Vin发布了新的文献求助10
6秒前
乐乐应助洪茜茜采纳,获得10
6秒前
6秒前
7秒前
ZL完成签到,获得积分10
7秒前
8秒前
8秒前
斯文败类应助白曼冬采纳,获得10
9秒前
9秒前
11秒前
11秒前
领导范儿应助友好的南风采纳,获得10
12秒前
13秒前
丘比特应助田国兵采纳,获得10
14秒前
15秒前
15秒前
16秒前
丘比特应助罗翊彰采纳,获得10
16秒前
英姑应助Vin采纳,获得10
16秒前
songvv发布了新的文献求助10
16秒前
17秒前
NexusExplorer应助黄卡卡采纳,获得10
18秒前
20秒前
yhbq发布了新的文献求助10
20秒前
小池嗯完成签到 ,获得积分10
20秒前
超级微笑发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908674
求助须知:如何正确求助?哪些是违规求助? 4185234
关于积分的说明 12997210
捐赠科研通 3952090
什么是DOI,文献DOI怎么找? 2167277
邀请新用户注册赠送积分活动 1185712
关于科研通互助平台的介绍 1092322