VLTENet: A Deep-Learning-Based Vertebra Localization and Tilt Estimation Network for Automatic Cobb Angle Estimation

人工智能 计算机科学 柯布角 科布 卷积神经网络 椎骨 分割 深度学习 脊柱侧凸 模式识别(心理学) 倾斜(摄像机) 计算机视觉 特征(语言学) 机器学习 数学 医学 古生物学 外科 几何学 生物 遗传学 语言学 哲学
作者
Lulin Zou,Lijun Guo,Rong Zhang,Lixin Ni,Zhenzuo Chen,Xiuchao He,Jianhua Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 3002-3013 被引量:14
标识
DOI:10.1109/jbhi.2023.3258361
摘要

Scoliosis diagnosis and assessment rely upon Cobb angle estimation from X-ray images of the spine. Recently, automated scoliosis assessment has been greatly improved using deep learning methods. However, in such methods, the Cobb angle is usually predicted based on regression models that don't account for information of the spine structure. Alternatively, the Cobb angle can be estimated indirectly through landmark-detection and vertebra-segmentation, but this approach is still highly sensitive to small detection and segmentation errors. This paper proposes a novel deep-learning architecture, called the vertebra localization and tilt estimation network (VLTENet). This network boosts the Cobb angle estimation accuracy through employing vertebra localization and tilt estimation as network prediction goals. In particular, the VLTENet model innovatively combines a deep high-resolution network (HRNet) and a fully-convolutional U-Net architecture for capturing long-range contextual information, the overall structure, and local details in spinal X-ray images. A feature fusion channel attention (FFCA) module is also proposed to selectively emphasize more informative features and suppress less informative ones. In addition, a joint spine loss function (JS-Loss) is designed to account for the spine shape and other spatial constraints, so that the network focuses more on spine-related regions and ignore irrelevant background regions. Finally, we propose a new Cobb angle estimation method conforms with the clinical Cobb angle calculation guidelines, and produces accurate estimates for different types of scoliosis. Extensive experiments on the publically-available AASCE challenge dataset and on an in-house dataset demonstrated the superiority of our method for the task of automatic assessment of scoliosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin发布了新的文献求助10
刚刚
跳跃鱼完成签到,获得积分10
刚刚
磨人的老妖精完成签到,获得积分10
1秒前
1秒前
GeniusC完成签到,获得积分10
1秒前
2秒前
2秒前
FashionBoy应助咖可乐采纳,获得10
3秒前
CR7应助淳于越泽采纳,获得20
3秒前
victory_liu发布了新的文献求助10
3秒前
亦清完成签到,获得积分10
3秒前
付艳完成签到,获得积分10
4秒前
梦醒完成签到,获得积分10
4秒前
NexusExplorer应助123采纳,获得10
5秒前
喜悦山柳完成签到,获得积分10
5秒前
专一的傲白完成签到 ,获得积分10
5秒前
5秒前
6秒前
咖啡味椰果完成签到 ,获得积分10
6秒前
DDDD发布了新的文献求助10
6秒前
Plucky完成签到,获得积分10
7秒前
FashionBoy应助Zzzzz采纳,获得30
7秒前
哦哟发布了新的文献求助10
8秒前
8秒前
8秒前
Spencer完成签到 ,获得积分10
9秒前
开朗的大叔完成签到,获得积分10
9秒前
111完成签到,获得积分10
9秒前
123发布了新的文献求助10
9秒前
10秒前
mojinzhao完成签到,获得积分10
10秒前
诸葛烤鸭完成签到,获得积分10
11秒前
张岱帅z完成签到,获得积分10
11秒前
Eason完成签到,获得积分10
11秒前
11秒前
咖可乐发布了新的文献求助10
12秒前
小马甲应助幸福的乾采纳,获得10
12秒前
qiuer0011完成签到,获得积分10
13秒前
GGbond完成签到,获得积分10
13秒前
maz123456发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582