Early Triage of Critically Ill Adult Patients With Mushroom Poisoning: Machine Learning Approach

急诊分诊台 医学 机器学习 接收机工作特性 蘑菇中毒 队列 人工智能 梯度升压 急诊医学 毒物控制 内科学 计算机科学 随机森林
作者
Yuxuan Liu,Xiaoguang Lyu,Bo Yang,Zhixiang Fang,Dejun Hu,Lei Shi,Bisheng Wu,Yong Tian,Enli Zhang,YuanChao Yang
出处
期刊:JMIR formative research [JMIR Publications Inc.]
卷期号:7: e44666-e44666 被引量:3
标识
DOI:10.2196/44666
摘要

Early triage of patients with mushroom poisoning is essential for administering precise treatment and reducing mortality. To our knowledge, there has been no established method to triage patients with mushroom poisoning based on clinical data.The purpose of this work was to construct a triage system to identify patients with mushroom poisoning based on clinical indicators using several machine learning approaches and to assess the prediction accuracy of these strategies.In all, 567 patients were collected from 5 primary care hospitals and facilities in Enshi, Hubei Province, China, and divided into 2 groups; 322 patients from 2 hospitals were used as the training cohort, and 245 patients from 3 hospitals were used as the test cohort. Four machine learning algorithms were used to construct the triage model for patients with mushroom poisoning. Performance was assessed using the area under the receiver operating characteristic curve (AUC), decision curve, sensitivity, specificity, and other representative statistics. Feature contributions were evaluated using Shapley additive explanations.Among several machine learning algorithms, extreme gradient boosting (XGBoost) showed the best discriminative ability in 5-fold cross-validation (AUC=0.83, 95% CI 0.77-0.90) and the test set (AUC=0.90, 95% CI 0.83-0.96). In the test set, the XGBoost model had a sensitivity of 0.93 (95% CI 0.81-0.99) and a specificity of 0.79 (95% CI 0.73-0.85), whereas the physicians' assessment had a sensitivity of 0.86 (95% CI 0.72-0.95) and a specificity of 0.66 (95% CI 0.59-0.73).The 14-factor XGBoost model for the early triage of mushroom poisoning can rapidly and accurately identify critically ill patients and will possibly serve as an important basis for the selection of treatment options and referral of patients, potentially reducing patient mortality and improving clinical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静萤发布了新的文献求助10
1秒前
隐形的baby发布了新的文献求助10
1秒前
隐形曼青应助GGMJ采纳,获得10
1秒前
旺仔不甜完成签到,获得积分10
2秒前
丘比特应助June采纳,获得10
4秒前
liusha发布了新的文献求助10
5秒前
Hello应助mira采纳,获得10
7秒前
8秒前
科研通AI6应助小易采纳,获得10
9秒前
lxt完成签到,获得积分10
11秒前
13秒前
13秒前
怜然关注了科研通微信公众号
15秒前
情怀应助李杰采纳,获得10
17秒前
所所应助天天开心采纳,获得10
17秒前
初一发布了新的文献求助10
17秒前
赘婿应助万松辉采纳,获得10
17秒前
18秒前
ysws完成签到,获得积分10
19秒前
Orange应助乐观的颦采纳,获得10
19秒前
完美世界应助June采纳,获得10
21秒前
22秒前
22秒前
闪闪完成签到,获得积分10
24秒前
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
24秒前
所所应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得20
25秒前
25秒前
传奇3应助科研通管家采纳,获得10
25秒前
无花果应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
慎默应助科研通管家采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073