Early Triage of Critically Ill Adult Patients With Mushroom Poisoning: Machine Learning Approach

急诊分诊台 医学 机器学习 接收机工作特性 蘑菇中毒 队列 人工智能 梯度升压 急诊医学 毒物控制 内科学 计算机科学 随机森林
作者
Yuxuan Liu,Xiaoguang Lyu,Bo Yang,Zhixiang Fang,Dejun Hu,Lei Shi,Bisheng Wu,Yong Tian,Enli Zhang,YuanChao Yang
出处
期刊:JMIR formative research [JMIR Publications Inc.]
卷期号:7: e44666-e44666 被引量:3
标识
DOI:10.2196/44666
摘要

Early triage of patients with mushroom poisoning is essential for administering precise treatment and reducing mortality. To our knowledge, there has been no established method to triage patients with mushroom poisoning based on clinical data.The purpose of this work was to construct a triage system to identify patients with mushroom poisoning based on clinical indicators using several machine learning approaches and to assess the prediction accuracy of these strategies.In all, 567 patients were collected from 5 primary care hospitals and facilities in Enshi, Hubei Province, China, and divided into 2 groups; 322 patients from 2 hospitals were used as the training cohort, and 245 patients from 3 hospitals were used as the test cohort. Four machine learning algorithms were used to construct the triage model for patients with mushroom poisoning. Performance was assessed using the area under the receiver operating characteristic curve (AUC), decision curve, sensitivity, specificity, and other representative statistics. Feature contributions were evaluated using Shapley additive explanations.Among several machine learning algorithms, extreme gradient boosting (XGBoost) showed the best discriminative ability in 5-fold cross-validation (AUC=0.83, 95% CI 0.77-0.90) and the test set (AUC=0.90, 95% CI 0.83-0.96). In the test set, the XGBoost model had a sensitivity of 0.93 (95% CI 0.81-0.99) and a specificity of 0.79 (95% CI 0.73-0.85), whereas the physicians' assessment had a sensitivity of 0.86 (95% CI 0.72-0.95) and a specificity of 0.66 (95% CI 0.59-0.73).The 14-factor XGBoost model for the early triage of mushroom poisoning can rapidly and accurately identify critically ill patients and will possibly serve as an important basis for the selection of treatment options and referral of patients, potentially reducing patient mortality and improving clinical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lii完成签到,获得积分10
刚刚
刚刚
zzs完成签到,获得积分20
2秒前
2秒前
爆米花应助欧阳慧玲采纳,获得10
3秒前
ding应助YX采纳,获得10
3秒前
4秒前
大模型应助软软采纳,获得10
5秒前
Jasper应助laotianshu采纳,获得10
5秒前
8秒前
9秒前
风中的忆灵完成签到,获得积分10
9秒前
10秒前
11秒前
王m完成签到 ,获得积分10
11秒前
11秒前
永毅发布了新的文献求助10
12秒前
852应助cccc采纳,获得10
13秒前
怡然尔白完成签到,获得积分10
13秒前
982289172发布了新的文献求助10
14秒前
高大寒梦发布了新的文献求助10
14秒前
Ayna发布了新的文献求助10
15秒前
嘞是举仔应助soga采纳,获得20
15秒前
小y同学发布了新的文献求助10
15秒前
d叨叨鱼发布了新的文献求助10
17秒前
Chris发布了新的文献求助10
17秒前
科研通AI6应助shaco采纳,获得10
18秒前
18秒前
18秒前
18秒前
clelo完成签到 ,获得积分10
19秒前
烟花应助ppppp采纳,获得10
20秒前
潇潇发布了新的文献求助10
21秒前
23秒前
23秒前
永毅完成签到,获得积分10
23秒前
XXX发布了新的文献求助10
24秒前
美好斓发布了新的文献求助10
24秒前
桐桐应助Chris采纳,获得10
25秒前
桐桐应助ZLB采纳,获得10
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049