Early Triage of Critically Ill Adult Patients With Mushroom Poisoning: Machine Learning Approach

急诊分诊台 医学 机器学习 接收机工作特性 蘑菇中毒 队列 人工智能 梯度升压 急诊医学 毒物控制 内科学 计算机科学 随机森林
作者
Yuxuan Liu,Xiaoguang Lyu,Bo Yang,Zhixiang Fang,Dejun Hu,Lei Shi,Bisheng Wu,Yong Tian,Enli Zhang,YuanChao Yang
出处
期刊:JMIR formative research [JMIR Publications Inc.]
卷期号:7: e44666-e44666 被引量:3
标识
DOI:10.2196/44666
摘要

Early triage of patients with mushroom poisoning is essential for administering precise treatment and reducing mortality. To our knowledge, there has been no established method to triage patients with mushroom poisoning based on clinical data.The purpose of this work was to construct a triage system to identify patients with mushroom poisoning based on clinical indicators using several machine learning approaches and to assess the prediction accuracy of these strategies.In all, 567 patients were collected from 5 primary care hospitals and facilities in Enshi, Hubei Province, China, and divided into 2 groups; 322 patients from 2 hospitals were used as the training cohort, and 245 patients from 3 hospitals were used as the test cohort. Four machine learning algorithms were used to construct the triage model for patients with mushroom poisoning. Performance was assessed using the area under the receiver operating characteristic curve (AUC), decision curve, sensitivity, specificity, and other representative statistics. Feature contributions were evaluated using Shapley additive explanations.Among several machine learning algorithms, extreme gradient boosting (XGBoost) showed the best discriminative ability in 5-fold cross-validation (AUC=0.83, 95% CI 0.77-0.90) and the test set (AUC=0.90, 95% CI 0.83-0.96). In the test set, the XGBoost model had a sensitivity of 0.93 (95% CI 0.81-0.99) and a specificity of 0.79 (95% CI 0.73-0.85), whereas the physicians' assessment had a sensitivity of 0.86 (95% CI 0.72-0.95) and a specificity of 0.66 (95% CI 0.59-0.73).The 14-factor XGBoost model for the early triage of mushroom poisoning can rapidly and accurately identify critically ill patients and will possibly serve as an important basis for the selection of treatment options and referral of patients, potentially reducing patient mortality and improving clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助木又采纳,获得10
1秒前
顾矜应助自然的砖头采纳,获得10
2秒前
3秒前
朴实的星星完成签到,获得积分20
5秒前
6秒前
喝可乐的萝卜兔完成签到 ,获得积分10
10秒前
所所应助霸气的金鱼采纳,获得10
11秒前
木又发布了新的文献求助10
13秒前
华仔应助YEM采纳,获得10
13秒前
领导范儿应助xielunwen采纳,获得10
13秒前
Lucas应助大水采纳,获得10
16秒前
上好佳发布了新的文献求助10
16秒前
16秒前
17秒前
神外第一刀完成签到 ,获得积分10
18秒前
Summer发布了新的文献求助10
21秒前
24秒前
所所应助siri采纳,获得10
26秒前
小小酥被卷了完成签到,获得积分10
28秒前
我是老大应助追寻笑寒采纳,获得10
28秒前
29秒前
Zoeyyy发布了新的文献求助10
29秒前
柯一一应助Ellis采纳,获得20
30秒前
30秒前
英俊的铭应助月林旭采纳,获得10
31秒前
31秒前
专注梦之完成签到,获得积分10
31秒前
31秒前
丫丫发布了新的文献求助10
31秒前
33秒前
34秒前
积极鸵鸟完成签到,获得积分10
34秒前
35秒前
shengchang88发布了新的文献求助80
35秒前
锴子发布了新的文献求助10
35秒前
FashionBoy应助武雨寒采纳,获得10
36秒前
靓丽雅彤发布了新的文献求助10
36秒前
ll应助丫丫采纳,获得10
37秒前
肖鹏发布了新的文献求助10
37秒前
桐桐应助Superg采纳,获得10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162837
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432