Early Triage of Critically Ill Adult Patients With Mushroom Poisoning: Machine Learning Approach

急诊分诊台 医学 机器学习 接收机工作特性 蘑菇中毒 队列 人工智能 梯度升压 急诊医学 毒物控制 内科学 计算机科学 随机森林
作者
Yuxuan Liu,Xiaoguang Lyu,Bo Yang,Zhixiang Fang,Dejun Hu,Lei Shi,Bisheng Wu,Yong Tian,Enli Zhang,YuanChao Yang
出处
期刊:JMIR formative research [JMIR Publications Inc.]
卷期号:7: e44666-e44666 被引量:3
标识
DOI:10.2196/44666
摘要

Early triage of patients with mushroom poisoning is essential for administering precise treatment and reducing mortality. To our knowledge, there has been no established method to triage patients with mushroom poisoning based on clinical data.The purpose of this work was to construct a triage system to identify patients with mushroom poisoning based on clinical indicators using several machine learning approaches and to assess the prediction accuracy of these strategies.In all, 567 patients were collected from 5 primary care hospitals and facilities in Enshi, Hubei Province, China, and divided into 2 groups; 322 patients from 2 hospitals were used as the training cohort, and 245 patients from 3 hospitals were used as the test cohort. Four machine learning algorithms were used to construct the triage model for patients with mushroom poisoning. Performance was assessed using the area under the receiver operating characteristic curve (AUC), decision curve, sensitivity, specificity, and other representative statistics. Feature contributions were evaluated using Shapley additive explanations.Among several machine learning algorithms, extreme gradient boosting (XGBoost) showed the best discriminative ability in 5-fold cross-validation (AUC=0.83, 95% CI 0.77-0.90) and the test set (AUC=0.90, 95% CI 0.83-0.96). In the test set, the XGBoost model had a sensitivity of 0.93 (95% CI 0.81-0.99) and a specificity of 0.79 (95% CI 0.73-0.85), whereas the physicians' assessment had a sensitivity of 0.86 (95% CI 0.72-0.95) and a specificity of 0.66 (95% CI 0.59-0.73).The 14-factor XGBoost model for the early triage of mushroom poisoning can rapidly and accurately identify critically ill patients and will possibly serve as an important basis for the selection of treatment options and referral of patients, potentially reducing patient mortality and improving clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
高高白曼舞完成签到,获得积分10
4秒前
4秒前
sow完成签到,获得积分10
4秒前
7秒前
8秒前
ZIP完成签到,获得积分10
8秒前
9秒前
Jessie完成签到,获得积分20
10秒前
咪花嗦完成签到,获得积分10
10秒前
优雅语兰完成签到,获得积分10
10秒前
科目三应助紧张的一鸣采纳,获得10
10秒前
shencheng完成签到,获得积分10
11秒前
上好佳发布了新的文献求助10
12秒前
12秒前
宝宝完成签到 ,获得积分10
12秒前
优雅语兰发布了新的文献求助10
12秒前
14秒前
14秒前
调研昵称发布了新的文献求助10
14秒前
JaneChen发布了新的文献求助50
14秒前
15秒前
hhhhhhh发布了新的文献求助10
18秒前
Jessie关注了科研通微信公众号
19秒前
lxy完成签到,获得积分10
20秒前
21秒前
阿斯顿发布了新的文献求助10
21秒前
22秒前
耍酷的小海豚完成签到,获得积分10
22秒前
23秒前
23秒前
24秒前
oh发布了新的文献求助10
26秒前
小宝骡发布了新的文献求助10
27秒前
博士搏斗完成签到 ,获得积分10
27秒前
科目三应助困困包采纳,获得10
28秒前
28秒前
alex完成签到,获得积分10
28秒前
可爱的函函应助嘟嘟嘟嘟采纳,获得10
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140698
求助须知:如何正确求助?哪些是违规求助? 2791571
关于积分的说明 7799545
捐赠科研通 2447907
什么是DOI,文献DOI怎么找? 1302182
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194