Optimizing Wheat Yield Prediction Integrating Data from Sentinel-1 and Sentinel-2 with CatBoost Algorithm

随机森林 均方误差 支持向量机 产量(工程) 精准农业 反向散射(电子邮件) 范畴变量 作物产量 Boosting(机器学习) 回归 线性回归 回归分析 遥感 计算机科学 算法 数学 人工智能 机器学习 农业 农学 统计 地质学 地理 电信 材料科学 考古 冶金 无线 生物
作者
Asier Uribeetxebarria,Ander Castellón,Ana Aizpurua
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (6): 1640-1640 被引量:15
标识
DOI:10.3390/rs15061640
摘要

Accurately estimating wheat yield is crucial for informed decision making in precision agriculture (PA) and improving crop management. In recent years, optical satellite-derived vegetation indices (Vis), such as Sentinel-2 (S2), have become widely used, but the availability of images depends on the weather conditions. For its part, Sentinel-1 (S1) backscatter data are less used in agriculture due to its complicated interpretation and processing, but is not impacted by weather. This study investigates the potential benefits of combining S1 and S2 data and evaluates the performance of the categorical boosting (CatBoost) algorithm in crop yield estimation. The study was conducted utilizing dense yield data from a yield monitor, obtained from 39 wheat (Triticum spp. L.) fields. The study analyzed three S2 images corresponding to different crop growth stages (GS) GS30, GS39-49, and GS69-75, and 13 Vis commonly used for wheat yield estimation were calculated for each image. In addition, three S1 images that were temporally close to the S2 images were acquired, and the vertical-vertical (VV) and vertical-horizontal (VH) backscatter were calculated. The performance of the CatBoost algorithm was compared to that of multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) algorithms in crop yield estimation. The results showed that the combination of S1 and S2 data with the CatBoost algorithm produced a yield prediction with a root mean squared error (RMSE) of 0.24 t ha−1, a relative RMSE (rRMSE) 3.46% and an R2 of 0.95. The result indicates a decrease of 30% in RMSE when compared to using S2 alone. However, when this algorithm was used to estimate the yield of a whole plot, leveraging information from the surrounding plots, the mean absolute error (MAE) was 0.31 t ha−1 which means a mean error of 4.38%. Accurate wheat yield estimation with a spatial resolution of 10 m becomes feasible when utilizing satellite data combined with CatBoost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luyuheng95完成签到,获得积分10
1秒前
2秒前
llp完成签到,获得积分20
4秒前
1680Y完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
自信的碧发布了新的文献求助10
6秒前
雪白紫夏完成签到,获得积分10
6秒前
研友_VZG7GZ应助整齐谷芹采纳,获得10
6秒前
欣欣欣完成签到,获得积分20
6秒前
bing完成签到,获得积分10
8秒前
希望天下0贩的0应助米娅采纳,获得10
10秒前
lym发布了新的文献求助10
10秒前
无花果应助kiki采纳,获得10
11秒前
12秒前
hpp完成签到,获得积分10
14秒前
旋转木马9个完成签到 ,获得积分10
14秒前
Unlung完成签到,获得积分10
15秒前
无花果应助和谐依珊采纳,获得10
15秒前
自信的碧完成签到,获得积分10
15秒前
16秒前
NexusExplorer应助Ghhhhn采纳,获得30
17秒前
瑁柏完成签到,获得积分10
17秒前
felix完成签到,获得积分10
18秒前
18秒前
JamesPei应助瑁柏采纳,获得10
20秒前
歌尔德蒙完成签到 ,获得积分10
20秒前
温暖的萤发布了新的文献求助50
21秒前
Judy完成签到 ,获得积分0
21秒前
NexusExplorer应助oneonlycrown采纳,获得10
22秒前
kinizu发布了新的文献求助10
22秒前
23秒前
白糖完成签到,获得积分10
24秒前
大恒完成签到,获得积分10
25秒前
今天只做一件事完成签到,获得积分0
28秒前
29秒前
29秒前
王一完成签到 ,获得积分10
30秒前
oneonlycrown发布了新的文献求助10
33秒前
脑洞疼应助aaiirrii采纳,获得10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150