Optimizing Wheat Yield Prediction Integrating Data from Sentinel-1 and Sentinel-2 with CatBoost Algorithm

随机森林 均方误差 支持向量机 产量(工程) 精准农业 反向散射(电子邮件) 范畴变量 作物产量 Boosting(机器学习) 回归 线性回归 回归分析 遥感 计算机科学 算法 数学 人工智能 机器学习 农业 农学 统计 地质学 地理 生物 考古 电信 冶金 材料科学 无线
作者
Asier Uribeetxebarria,Ander Castellón,Ana Aizpurua
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (6): 1640-1640 被引量:15
标识
DOI:10.3390/rs15061640
摘要

Accurately estimating wheat yield is crucial for informed decision making in precision agriculture (PA) and improving crop management. In recent years, optical satellite-derived vegetation indices (Vis), such as Sentinel-2 (S2), have become widely used, but the availability of images depends on the weather conditions. For its part, Sentinel-1 (S1) backscatter data are less used in agriculture due to its complicated interpretation and processing, but is not impacted by weather. This study investigates the potential benefits of combining S1 and S2 data and evaluates the performance of the categorical boosting (CatBoost) algorithm in crop yield estimation. The study was conducted utilizing dense yield data from a yield monitor, obtained from 39 wheat (Triticum spp. L.) fields. The study analyzed three S2 images corresponding to different crop growth stages (GS) GS30, GS39-49, and GS69-75, and 13 Vis commonly used for wheat yield estimation were calculated for each image. In addition, three S1 images that were temporally close to the S2 images were acquired, and the vertical-vertical (VV) and vertical-horizontal (VH) backscatter were calculated. The performance of the CatBoost algorithm was compared to that of multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) algorithms in crop yield estimation. The results showed that the combination of S1 and S2 data with the CatBoost algorithm produced a yield prediction with a root mean squared error (RMSE) of 0.24 t ha−1, a relative RMSE (rRMSE) 3.46% and an R2 of 0.95. The result indicates a decrease of 30% in RMSE when compared to using S2 alone. However, when this algorithm was used to estimate the yield of a whole plot, leveraging information from the surrounding plots, the mean absolute error (MAE) was 0.31 t ha−1 which means a mean error of 4.38%. Accurate wheat yield estimation with a spatial resolution of 10 m becomes feasible when utilizing satellite data combined with CatBoost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玉欢完成签到,获得积分20
1秒前
知性的友易完成签到,获得积分10
1秒前
falseme发布了新的文献求助10
1秒前
DDDD发布了新的文献求助10
1秒前
乐乐完成签到,获得积分10
1秒前
冯11完成签到,获得积分10
1秒前
你是谁完成签到,获得积分10
2秒前
妮妮完成签到,获得积分10
2秒前
小小鱼发布了新的文献求助10
3秒前
yuan发布了新的文献求助10
3秒前
爆米花应助别吃小米粥采纳,获得10
3秒前
小侯发布了新的文献求助10
3秒前
Anny完成签到,获得积分10
3秒前
小巫子完成签到,获得积分20
3秒前
鬼火完成签到,获得积分10
3秒前
3秒前
科研通AI5应助yhh采纳,获得10
4秒前
DukeAn809应助KYTQQ采纳,获得40
4秒前
可爱的函函应助寒月如雪采纳,获得10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
123关闭了123文献求助
5秒前
5秒前
丁火发布了新的文献求助20
5秒前
Maestro_S应助怕黑的擎采纳,获得10
5秒前
6秒前
清风扶露发布了新的文献求助10
7秒前
乐乐应助QWER采纳,获得10
8秒前
8秒前
9秒前
Cactus应助丽莉采纳,获得10
9秒前
yuan完成签到,获得积分10
9秒前
飞天817完成签到,获得积分10
10秒前
majianzzu完成签到,获得积分10
10秒前
susuna发布了新的文献求助10
10秒前
自信天发布了新的文献求助10
10秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426