清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimizing Wheat Yield Prediction Integrating Data from Sentinel-1 and Sentinel-2 with CatBoost Algorithm

随机森林 均方误差 支持向量机 产量(工程) 精准农业 反向散射(电子邮件) 范畴变量 作物产量 Boosting(机器学习) 回归 线性回归 回归分析 遥感 计算机科学 算法 数学 人工智能 机器学习 农业 农学 统计 地质学 地理 电信 材料科学 考古 冶金 无线 生物
作者
Asier Uribeetxebarria,Ander Castellón,Ana Aizpurua
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (6): 1640-1640 被引量:15
标识
DOI:10.3390/rs15061640
摘要

Accurately estimating wheat yield is crucial for informed decision making in precision agriculture (PA) and improving crop management. In recent years, optical satellite-derived vegetation indices (Vis), such as Sentinel-2 (S2), have become widely used, but the availability of images depends on the weather conditions. For its part, Sentinel-1 (S1) backscatter data are less used in agriculture due to its complicated interpretation and processing, but is not impacted by weather. This study investigates the potential benefits of combining S1 and S2 data and evaluates the performance of the categorical boosting (CatBoost) algorithm in crop yield estimation. The study was conducted utilizing dense yield data from a yield monitor, obtained from 39 wheat (Triticum spp. L.) fields. The study analyzed three S2 images corresponding to different crop growth stages (GS) GS30, GS39-49, and GS69-75, and 13 Vis commonly used for wheat yield estimation were calculated for each image. In addition, three S1 images that were temporally close to the S2 images were acquired, and the vertical-vertical (VV) and vertical-horizontal (VH) backscatter were calculated. The performance of the CatBoost algorithm was compared to that of multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) algorithms in crop yield estimation. The results showed that the combination of S1 and S2 data with the CatBoost algorithm produced a yield prediction with a root mean squared error (RMSE) of 0.24 t ha−1, a relative RMSE (rRMSE) 3.46% and an R2 of 0.95. The result indicates a decrease of 30% in RMSE when compared to using S2 alone. However, when this algorithm was used to estimate the yield of a whole plot, leveraging information from the surrounding plots, the mean absolute error (MAE) was 0.31 t ha−1 which means a mean error of 4.38%. Accurate wheat yield estimation with a spatial resolution of 10 m becomes feasible when utilizing satellite data combined with CatBoost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
山河与海完成签到,获得积分10
14秒前
大方忆秋完成签到,获得积分10
15秒前
神勇的晟睿完成签到,获得积分10
15秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
26秒前
44秒前
罗罗发布了新的文献求助10
50秒前
54秒前
嘿嘿完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
adai发布了新的文献求助10
1分钟前
大个应助adai采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
TonyLee发布了新的文献求助10
2分钟前
2分钟前
TonyLee完成签到,获得积分10
2分钟前
2分钟前
三人水明完成签到 ,获得积分10
2分钟前
xz完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
李宇超完成签到 ,获得积分10
3分钟前
gwbk完成签到,获得积分10
4分钟前
4分钟前
4分钟前
和平使命应助科研通管家采纳,获得10
4分钟前
华仔应助科研通管家采纳,获得20
4分钟前
和平使命应助科研通管家采纳,获得10
4分钟前
4分钟前
ccc完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
adai发布了新的文献求助10
5分钟前
adai完成签到,获得积分20
5分钟前
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3360076
求助须知:如何正确求助?哪些是违规求助? 2982627
关于积分的说明 8704602
捐赠科研通 2664401
什么是DOI,文献DOI怎么找? 1459035
科研通“疑难数据库(出版商)”最低求助积分说明 675397
邀请新用户注册赠送积分活动 666421