Lewis Johnson,Scott R. Hammond,Delwin L. Elder,Kevin M. O’Malley,Huajun Xu,Larry R. Dalton,Bruce H. Robinson
标识
DOI:10.1117/12.2633764
摘要
The development of silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) electro-optic modulators in the 2010s has enabled the large electro-optic (EO) performance of organic chromophores to be leveraged for high-performance photonic components capable of integration with CMOS electronics. Recent improvements in theory-aided design and materials performance have enabled large increases in both electro-optic performance and materials stability. We report on the implications of these developments for hybrid device performance, manufacturability, processing, and packaging, as well as potential new directions for increasingly scalable fabrication of hybrid electro-optic devices for classical and quantum communications and computing applications.