A Wavelet-Based Compressive Deep Learning Scheme for Inverse Scattering Problems

压缩传感 计算机科学 小波 反问题 内存占用 架空(工程) 算法 数学优化 计算机工程 人工智能 数学 操作系统 数学分析
作者
Zheng Zong,Yusong Wang,Zhun Wei
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:12
标识
DOI:10.1109/tgrs.2022.3214569
摘要

Recently, physics-assisted deep learning schemes (DLSs) have demonstrated state-of-the-art performance for solving inverse scattering problems (ISPs). However, most learning approaches typically require a high computational overhead and a big memory footprint, which prohibits further applications. In this work, a wavelet-based compressive scheme (WCS) is proposed in solving ISPs, where the multi-subspace information is explored by wavelet bases and branched between each encoder and decoder path. It is shown that the proposed WCS can be simply adapted to commonly used DLSs, such as the back-propagation scheme (BPS) and the dominant current scheme (DCS), to reduce the computational and storage load. Specifically, benefiting from compressive and multi-resolution properties of wavelet and with the help of the factorized convolution method, more than 99.7% trainable weights are reduced in both illustrated BP-WCS and DC-WCS, whereas the performance deterioration is limited around 1% in terms of traditional BPS and DCS. Extensive numerical and experimental tests are conducted for quantitative validations. Comparisons are also made among UNet, a well-known compressive method (Mobile-UNet), and the proposed method. It is expected that the suggested compression technique would find its applications on deep learning-based electromagnetic inverse problems under source-limited scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shirley发布了新的文献求助10
刚刚
迷人雅容完成签到,获得积分10
刚刚
赤练仙子完成签到,获得积分10
刚刚
2秒前
2秒前
36456657应助hututu采纳,获得10
2秒前
输入法应助xiaomings007采纳,获得10
3秒前
3秒前
向中恶发布了新的文献求助10
4秒前
阳光盼山完成签到,获得积分10
4秒前
Hima完成签到,获得积分10
6秒前
小蘑菇应助huangyi采纳,获得10
6秒前
成就初彤发布了新的文献求助10
7秒前
安详的斑马应助努力的学采纳,获得20
7秒前
King发布了新的文献求助10
7秒前
7秒前
天才小张发布了新的文献求助10
9秒前
风为裳完成签到,获得积分10
10秒前
一一完成签到,获得积分20
11秒前
11秒前
苏卿应助繁华采纳,获得10
11秒前
完美世界应助mk采纳,获得10
12秒前
MCY发布了新的文献求助10
12秒前
早早入眠完成签到,获得积分10
13秒前
Ava应助who采纳,获得10
13秒前
14秒前
cc发布了新的文献求助10
14秒前
yck1027完成签到,获得积分10
14秒前
15秒前
johnny完成签到,获得积分10
16秒前
荔枝的油饼iKun完成签到,获得积分10
17秒前
小摩尔完成签到 ,获得积分10
17秒前
哆吉吖完成签到,获得积分10
18秒前
科研通AI5应助谨慎山彤采纳,获得10
19秒前
19秒前
19秒前
shirley完成签到,获得积分10
20秒前
共享精神应助聂宇航采纳,获得10
20秒前
共享精神应助szy采纳,获得10
20秒前
shanage应助xiaomings007采纳,获得10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652247
求助须知:如何正确求助?哪些是违规求助? 3216485
关于积分的说明 9712113
捐赠科研通 2924205
什么是DOI,文献DOI怎么找? 1601585
邀请新用户注册赠送积分活动 754250
科研通“疑难数据库(出版商)”最低求助积分说明 733019