Secure Task Offloading for MEC-Aided-UAV System

移动边缘计算 计算机科学 坐标下降 发射机功率输出 计算卸载 最优化问题 服务器 人为噪声 数学优化 能源消耗 凸优化 基站 边缘计算 分布式计算 GSM演进的增强数据速率 计算机网络 发射机 正多边形 算法 频道(广播) 人工智能 数学 工程类 电气工程 几何学
作者
Peipei Chen,Luo Xue-shan,Deke Guo,Yuchen Sun,Junjie Xie,Yawei Zhao,Rui Zhou
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:8 (5): 3444-3457 被引量:18
标识
DOI:10.1109/tiv.2022.3227367
摘要

The promise of unmanned aerial vehicles (UAVs) combined with the mobile edge computing (MEC), named MEC-aided-UAV extends the MEC application to offer new flexible, low-latency computing services and considerable utilities for pervasive sensing of the world. In MEC, the UAV with limited on-board energy and computation resources needs to offload its tasks to resource-rich ground base stations (GBSs) servers. Because of the broadcast nature of line-of-sight (LoS) channels, one of the key challenges in task offloading is to guarantee that confidential data is offloaded safely to the GBSs without being intercepted by eavesdroppers (Eves). In this MEC-aided-UAV system, the GBSs help the UAV compute the offloaded tasks and transmit the artificial noise (AN) to suppress the vicious Eves. We make the first attempt to study the maximum-minimum average secrecy capacity problem, including joint optimization of the trajectory and transmit power of the UAV, the transmit power of AN, the local computation ratio, and the selection of GBSs with consideration of the practical constraints of completion delay of the tasks, maximum velocity, and the power consumption. The optimization issue is confirmed as a mixed-integer non-convex problem. Thereafter, a low-complexity iterative algorithm with the block coordinate descent method and successive convex approximation technique is put forward to get its suboptimal solution. In addition, the convergent solution can be achieved by solving the subproblems in turn. Evaluation results validate that the proposed secure offloading scheme significantly effectiveness the baselines by 17.4%-71.2% on the maximum-minimum average secrecy capacity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yurunxintian完成签到,获得积分10
1秒前
水枝完成签到,获得积分10
1秒前
科研通AI5应助多啦啦采纳,获得10
2秒前
小沈发布了新的文献求助10
3秒前
水枝发布了新的文献求助10
4秒前
科研通AI5应助luchang123qq采纳,获得10
6秒前
科研通AI5应助淡定小懒猪采纳,获得10
9秒前
玄武岩完成签到,获得积分10
9秒前
jj发布了新的文献求助10
11秒前
爆米花应助bubu采纳,获得10
11秒前
情怀应助树心采纳,获得30
13秒前
15秒前
17秒前
17秒前
夏虫语冰发布了新的文献求助30
19秒前
20秒前
玄武岩发布了新的文献求助10
21秒前
jj完成签到,获得积分10
22秒前
23秒前
24秒前
luchang123qq发布了新的文献求助10
25秒前
29秒前
烟花应助科研通管家采纳,获得10
29秒前
星辰大海应助科研通管家采纳,获得200
29秒前
lling应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
Magician应助科研通管家采纳,获得20
29秒前
星辰大海应助科研通管家采纳,获得50
30秒前
搜集达人应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
Ava应助飘逸的山柏采纳,获得10
31秒前
34秒前
35秒前
36秒前
小蘑菇应助liu采纳,获得10
36秒前
吴鸣拭发布了新的文献求助10
39秒前
岸芷诺苏发布了新的文献求助10
40秒前
科目三应助Emily采纳,获得10
42秒前
周大琳发布了新的文献求助10
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669998
求助须知:如何正确求助?哪些是违规求助? 3227414
关于积分的说明 9775372
捐赠科研通 2937577
什么是DOI,文献DOI怎么找? 1609384
邀请新用户注册赠送积分活动 760339
科研通“疑难数据库(出版商)”最低求助积分说明 735792