DeepDN_iGlu: prediction of lysine glutarylation sites based on attention residual learning method and DenseNet

人工智能 残余物 计算机科学 机器学习 生物系统 生物 算法
作者
Jianhua Jia,Mingwei Sun,Genqiang Wu,Wang‐Ren Qiu
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:20 (2): 2815-2830 被引量:12
标识
DOI:10.3934/mbe.2023132
摘要

<abstract> <p>As a key issue in orchestrating various biological processes and functions, protein post-translational modification (PTM) occurs widely in the mechanism of protein's function of animals and plants. Glutarylation is a type of protein-translational modification that occurs at active ε-amino groups of specific lysine residues in proteins, which is associated with various human diseases, including diabetes, cancer, and glutaric aciduria type I. Therefore, the issue of prediction for glutarylation sites is particularly important. This study developed a brand-new deep learning-based prediction model for glutarylation sites named DeepDN_iGlu via adopting attention residual learning method and DenseNet. The focal loss function is utilized in this study in place of the traditional cross-entropy loss function to address the issue of a substantial imbalance in the number of positive and negative samples. It can be noted that DeepDN_iGlu based on the deep learning model offers a greater potential for the glutarylation site prediction after employing the straightforward one hot encoding method, with Sensitivity (Sn), Specificity (Sp), Accuracy (ACC), Mathews Correlation Coefficient (MCC), and Area Under Curve (AUC) of 89.29%, 61.97%, 65.15%, 0.33 and 0.80 accordingly on the independent test set. To the best of the authors' knowledge, this is the first time that DenseNet has been used for the prediction of glutarylation sites. DeepDN_iGlu has been deployed as a web server (<a href="https://bioinfo.wugenqiang.top/~smw/DeepDN_iGlu/" target="_blank">https://bioinfo.wugenqiang.top/~smw/DeepDN_iGlu/</a>) that is available to make glutarylation site prediction data more accessible.</p> </abstract>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书临完成签到,获得积分10
刚刚
刚刚
XYQ完成签到,获得积分10
1秒前
现代的曲奇完成签到 ,获得积分10
3秒前
tian完成签到,获得积分20
3秒前
田様应助WU采纳,获得10
3秒前
4秒前
4秒前
书临发布了新的文献求助10
4秒前
乐乐应助bfhlf采纳,获得10
5秒前
5秒前
栾晓倩6666完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
毛豆应助稳重绿蕊采纳,获得10
7秒前
7秒前
努力毕业发布了新的文献求助10
7秒前
8秒前
8秒前
tian发布了新的文献求助20
8秒前
柒柒球发布了新的文献求助10
10秒前
10秒前
latheriny发布了新的文献求助10
10秒前
11秒前
11秒前
XYQ发布了新的文献求助10
12秒前
伍佰驳回了情怀应助
13秒前
寒江雪发布了新的文献求助10
13秒前
料峭声花完成签到,获得积分10
14秒前
多多指教发布了新的文献求助10
14秒前
Remy发布了新的文献求助10
14秒前
情怀应助白白白采纳,获得10
16秒前
艾琳克斯发布了新的文献求助10
16秒前
Akim应助xinbowey采纳,获得10
17秒前
兴奋硬币发布了新的文献求助10
17秒前
高sir完成签到,获得积分10
17秒前
19秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422301
求助须知:如何正确求助?哪些是违规求助? 3022634
关于积分的说明 8901789
捐赠科研通 2710031
什么是DOI,文献DOI怎么找? 1486283
科研通“疑难数据库(出版商)”最低求助积分说明 686983
邀请新用户注册赠送积分活动 682206