突变体
生物
微生物学
体内
拉伤
生物膜
毒力
生物化学
细菌
基因
遗传学
解剖
作者
Feng‐Ling Shu,Jin Liyun,Hao Líu,Tao Zhang,Fei Yin,Jiasong Xie,Suming Zhou
摘要
Pseudomonas plecoglossicida is an important pathogenic bacterium in aquaculture that causes visceral granulomas in large yellow croaker (Larimichthys crocea). Uridine diphosphate glucose phosphorylase encoded by galU plays a key role in biosynthesis of the bacterial envelope, particularly lipopolysaccharide and the capsule. In this study, we inactivated the galU gene in the P. plecoglossicida isolate XSDHY-P. The galU mutant strain showed impaired growth in the early exponential stage and lacked the O polysaccharide side chain in lipopolysaccharide, but almost no defect in biofilm formation was detected. The galU mutant strain also exhibited significantly more sensitivity to the bactericidal action of normal fish serum mediated by the complement system compared to the wild-type strain. In a cell model originating from the head kidney of large yellow croaker, the galU mutant strain showed lower capacities of adhesion, invasion, and intracellular survival compared to the wild-type strain. In addition, the deficiency of the galU mutant drastically decreased bacterial loads in tissues and attenuated P. plecoglossicida virulence in fish. These results suggest that the galU gene of P. plecoglossicida is required for in vivo survival in large yellow croaker.
科研通智能强力驱动
Strongly Powered by AbleSci AI