Predicting diagnostic gene expression profiles associated with immune infiltration in patients with lupus nephritis

免疫系统 狼疮性肾炎 接收机工作特性 骨髓 疾病 医学 免疫学 内科学
作者
Lin Wang,Zhihua Yang,Hangxing Yu,Wei Lin,Ruoxi Wu,Huiying Yang,Kang Yang
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:13
标识
DOI:10.3389/fimmu.2022.839197
摘要

Objective To identify potential diagnostic markers of lupus nephritis (LN) based on bioinformatics and machine learning and to explore the significance of immune cell infiltration in this pathology. Methods Seven LN gene expression datasets were downloaded from the GEO database, and the larger sample size was used as the training group to obtain differential genes (DEGs) between LN and healthy controls, and to perform gene function, disease ontology (DO), and gene set enrichment analyses (GSEA). Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to identify candidate biomarkers. The diagnostic value of LN diagnostic gene biomarkers was further evaluated in the area under the ROC curve observed in the validation dataset. CIBERSORT was used to analyze 22 immune cell fractions from LN patients and to analyze their correlation with diagnostic markers. Results Thirty and twenty-one DEGs were screened in kidney tissue and peripheral blood, respectively. Both of which covered macrophages and interferons. The disease enrichment analysis of DEGs in kidney tissues showed that they were mainly involved in immune and renal diseases, and in peripheral blood it was mainly enriched in cardiovascular system, bone marrow, and oral cavity. The machine learning algorithm combined with external dataset validation revealed that C1QA(AUC = 0.741), C1QB(AUC = 0.758), MX1(AUC = 0.865), RORC(AUC = 0.911), CD177(AUC = 0.855), DEFA4(AUC= 0.843)and HERC5(AUC = 0.880) had high diagnostic value and could be used as diagnostic biomarkers of LN. Compared to controls, pathways such as cell adhesion molecule cam, and systemic lupus erythematosus were activated in kidney tissues; cell cycle, cytoplasmic DNA sensing pathways, NOD-like receptor signaling pathways, proteasome, and RIG-1-like receptors were activated in peripheral blood. Immune cell infiltration analysis showed that diagnostic markers in kidney tissue were associated with T cells CD8 and Dendritic cells resting, and in blood were associated with T cells CD4 memory resting, suggesting that CD4 T cells, CD8 T cells and dendritic cells are closely related to the development and progression of LN. Conclusion C1QA, C1QB, MX1, RORC, CD177, DEFA4 and HERC5 could be used as new candidate molecular markers for LN. It may provide new insights into the diagnosis and molecular treatment of LN in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LUJyyyy完成签到,获得积分10
1秒前
我是老大应助zero采纳,获得10
1秒前
1秒前
大闲鱼铭一完成签到 ,获得积分10
3秒前
马洛发布了新的文献求助10
4秒前
丘丘小飞船关注了科研通微信公众号
4秒前
无奈抽屉发布了新的文献求助30
5秒前
酷波er应助海潮采纳,获得10
6秒前
6秒前
7秒前
8秒前
8秒前
9秒前
1L发布了新的文献求助10
9秒前
马洛完成签到,获得积分10
10秒前
10秒前
含蓄完成签到,获得积分10
11秒前
hhh发布了新的文献求助10
12秒前
12秒前
OO圈圈发布了新的文献求助10
13秒前
Bellis完成签到 ,获得积分10
13秒前
ytg922完成签到,获得积分10
14秒前
JianYugen完成签到,获得积分10
14秒前
小蘑菇应助Lianna采纳,获得10
16秒前
爆米花应助1L采纳,获得10
17秒前
唯一完成签到 ,获得积分10
18秒前
爱吃西瓜的llily完成签到,获得积分10
18秒前
18秒前
pierce发布了新的文献求助200
19秒前
20秒前
小红花发布了新的文献求助10
20秒前
22秒前
小黄瓜896发布了新的文献求助10
22秒前
zero发布了新的文献求助10
22秒前
AoAoo发布了新的文献求助10
23秒前
唐僧肉臊子面完成签到,获得积分10
23秒前
pjxxx完成签到 ,获得积分10
23秒前
27秒前
Rjy发布了新的文献求助10
30秒前
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159701
求助须知:如何正确求助?哪些是违规求助? 2810654
关于积分的说明 7888962
捐赠科研通 2469692
什么是DOI,文献DOI怎么找? 1314994
科研通“疑难数据库(出版商)”最低求助积分说明 630738
版权声明 602012