Predicting diagnostic gene expression profiles associated with immune infiltration in patients with lupus nephritis

免疫系统 狼疮性肾炎 接收机工作特性 骨髓 疾病 医学 免疫学 内科学
作者
Lin Wang,Zhihua Yang,Hangxing Yu,Wei Lin,Ruoxi Wu,Huiying Yang,Kang Yang
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:13
标识
DOI:10.3389/fimmu.2022.839197
摘要

Objective To identify potential diagnostic markers of lupus nephritis (LN) based on bioinformatics and machine learning and to explore the significance of immune cell infiltration in this pathology. Methods Seven LN gene expression datasets were downloaded from the GEO database, and the larger sample size was used as the training group to obtain differential genes (DEGs) between LN and healthy controls, and to perform gene function, disease ontology (DO), and gene set enrichment analyses (GSEA). Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to identify candidate biomarkers. The diagnostic value of LN diagnostic gene biomarkers was further evaluated in the area under the ROC curve observed in the validation dataset. CIBERSORT was used to analyze 22 immune cell fractions from LN patients and to analyze their correlation with diagnostic markers. Results Thirty and twenty-one DEGs were screened in kidney tissue and peripheral blood, respectively. Both of which covered macrophages and interferons. The disease enrichment analysis of DEGs in kidney tissues showed that they were mainly involved in immune and renal diseases, and in peripheral blood it was mainly enriched in cardiovascular system, bone marrow, and oral cavity. The machine learning algorithm combined with external dataset validation revealed that C1QA(AUC = 0.741), C1QB(AUC = 0.758), MX1(AUC = 0.865), RORC(AUC = 0.911), CD177(AUC = 0.855), DEFA4(AUC= 0.843)and HERC5(AUC = 0.880) had high diagnostic value and could be used as diagnostic biomarkers of LN. Compared to controls, pathways such as cell adhesion molecule cam, and systemic lupus erythematosus were activated in kidney tissues; cell cycle, cytoplasmic DNA sensing pathways, NOD-like receptor signaling pathways, proteasome, and RIG-1-like receptors were activated in peripheral blood. Immune cell infiltration analysis showed that diagnostic markers in kidney tissue were associated with T cells CD8 and Dendritic cells resting, and in blood were associated with T cells CD4 memory resting, suggesting that CD4 T cells, CD8 T cells and dendritic cells are closely related to the development and progression of LN. Conclusion C1QA, C1QB, MX1, RORC, CD177, DEFA4 and HERC5 could be used as new candidate molecular markers for LN. It may provide new insights into the diagnosis and molecular treatment of LN in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助故意的身影采纳,获得10
1秒前
星辰大海应助狂野的书易采纳,获得10
1秒前
yancy应助顺心的故事采纳,获得10
2秒前
所所应助栗子采纳,获得100
2秒前
3秒前
4秒前
6秒前
迷路的雨灵完成签到,获得积分20
6秒前
shinn发布了新的文献求助10
7秒前
懵懂发布了新的文献求助30
8秒前
万能图书馆应助体贴汽车采纳,获得10
8秒前
小宋发布了新的文献求助10
9秒前
9秒前
陌路发布了新的文献求助10
10秒前
那当然完成签到,获得积分10
11秒前
科研dog完成签到,获得积分10
12秒前
缥缈南露发布了新的文献求助10
12秒前
13秒前
14秒前
可爱的函函应助陌路采纳,获得10
16秒前
shinn发布了新的文献求助10
16秒前
111咩咩发布了新的文献求助10
16秒前
16秒前
天天快乐应助缥缈南露采纳,获得10
17秒前
pl就是你完成签到,获得积分10
19秒前
19秒前
19秒前
无花果应助勤劳水香采纳,获得10
19秒前
柯一一应助世上无难事采纳,获得10
20秒前
xuxiaoyan发布了新的文献求助10
20秒前
体贴汽车发布了新的文献求助10
20秒前
顾瞻发布了新的文献求助10
23秒前
科研通AI5应助三哥采纳,获得30
23秒前
NL14D完成签到,获得积分10
23秒前
shinn发布了新的文献求助50
25秒前
打打应助姬欢欢采纳,获得10
25秒前
非蛋白呼吸商完成签到,获得积分10
28秒前
干饭大王应助直率夜阑采纳,获得10
28秒前
懵懂完成签到,获得积分10
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967219
求助须知:如何正确求助?哪些是违规求助? 3512559
关于积分的说明 11164121
捐赠科研通 3247452
什么是DOI,文献DOI怎么找? 1793849
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804494