Bearing fault feature extraction measure using multi-layer noise reduction technology

特征提取 峰度 模式识别(心理学) 人工智能 断层(地质) 计算机科学 方位(导航) 噪音(视频) 降噪 特征(语言学) 信号(编程语言) 度量(数据仓库) 支持向量机 数据挖掘 数学 统计 哲学 地质学 地震学 图像(数学) 程序设计语言 语言学
作者
Le Yang,Cao Liang,Jinglin Wang,Yao Xiaohan,Yong Shen,Wu Yingjian
标识
DOI:10.1109/sdpc55702.2022.9915997
摘要

The fault signals of rolling bearings are nonlinear and non-stationary, then it is difficult to extract fault feature of rolling bearings. In order to improve the accuracy of bearing fault diagnosis, a new feature extraction method based on multi-layer noise reduction is proposed in this paper. The proposed method first uses EVMD method to process the original signal, firstly, adding noise to the original signal. Then VMD algorithm is used to decompose the signal multiple times, and several components with more original information were retained and reconstructed. On the basis of the above reconstructed signals, features are extracted by MEMD method. Firstly, setting the Times of EMD measure; After each EMD decomposition, the kurtosis values of IMF components are calculated and several IMF components with large kurtosis values are retained; Finally, several selected components are weighted and fused to form fault feature vectors of bearings. The feature extraction of the proposed method was completed by using the bearing data set of Xi 'an Jiao tong Lei yaguo team. In order to verify the advantage of the proposed algorithm in this paper, the SVM algorithm is adopted to classify the fault features, and compared with the features extraction results of VMD and EMD methods alone, measure is proposed in this paper has higher classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动黄豆完成签到,获得积分20
刚刚
1秒前
1秒前
3秒前
5秒前
Owen应助Kikua采纳,获得10
5秒前
juliar完成签到 ,获得积分10
5秒前
6秒前
Bressanone发布了新的文献求助10
6秒前
7秒前
彭于晏应助忐忑的阑香采纳,获得10
7秒前
赘婿应助xiaojian_291采纳,获得10
7秒前
8秒前
郭小宝发布了新的文献求助20
8秒前
糊涂的语兰完成签到,获得积分10
9秒前
浮生若梦完成签到 ,获得积分10
10秒前
CA发布了新的文献求助10
10秒前
忘记时间发布了新的文献求助30
10秒前
王羊补牢完成签到,获得积分10
12秒前
13秒前
潇湘雪月发布了新的文献求助10
18秒前
栗园应助仙都丽娜采纳,获得10
19秒前
严珍珍完成签到 ,获得积分10
19秒前
思源应助郭小宝采纳,获得10
19秒前
无理完成签到 ,获得积分10
20秒前
22秒前
22秒前
无端完成签到 ,获得积分20
22秒前
感动黄豆发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
zwy109发布了新的文献求助10
25秒前
27秒前
立夏完成签到,获得积分10
28秒前
28秒前
29秒前
29秒前
30秒前
hello发布了新的文献求助10
30秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136