亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bearing fault feature extraction measure using multi-layer noise reduction technology

特征提取 峰度 模式识别(心理学) 人工智能 断层(地质) 计算机科学 方位(导航) 噪音(视频) 降噪 特征(语言学) 信号(编程语言) 度量(数据仓库) 支持向量机 数据挖掘 数学 统计 哲学 地质学 地震学 图像(数学) 程序设计语言 语言学
作者
Le Yang,Cao Liang,Jinglin Wang,Yao Xiaohan,Yong Shen,Wu Yingjian
标识
DOI:10.1109/sdpc55702.2022.9915997
摘要

The fault signals of rolling bearings are nonlinear and non-stationary, then it is difficult to extract fault feature of rolling bearings. In order to improve the accuracy of bearing fault diagnosis, a new feature extraction method based on multi-layer noise reduction is proposed in this paper. The proposed method first uses EVMD method to process the original signal, firstly, adding noise to the original signal. Then VMD algorithm is used to decompose the signal multiple times, and several components with more original information were retained and reconstructed. On the basis of the above reconstructed signals, features are extracted by MEMD method. Firstly, setting the Times of EMD measure; After each EMD decomposition, the kurtosis values of IMF components are calculated and several IMF components with large kurtosis values are retained; Finally, several selected components are weighted and fused to form fault feature vectors of bearings. The feature extraction of the proposed method was completed by using the bearing data set of Xi 'an Jiao tong Lei yaguo team. In order to verify the advantage of the proposed algorithm in this paper, the SVM algorithm is adopted to classify the fault features, and compared with the features extraction results of VMD and EMD methods alone, measure is proposed in this paper has higher classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
ICSSCI完成签到,获得积分10
22秒前
35秒前
董可以发布了新的文献求助10
39秒前
风华正茂完成签到,获得积分10
1分钟前
1分钟前
1分钟前
jimmy_bytheway完成签到,获得积分0
1分钟前
桃桃发布了新的文献求助10
1分钟前
可爱的函函应助桃桃采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
所所应助爱笑的毛衣采纳,获得10
2分钟前
2分钟前
2分钟前
duan完成签到 ,获得积分10
2分钟前
holder完成签到,获得积分10
3分钟前
3分钟前
沐白发布了新的文献求助10
3分钟前
3分钟前
刘宇童发布了新的文献求助10
3分钟前
大模型应助吕易巧采纳,获得10
3分钟前
迷人问兰完成签到,获得积分10
3分钟前
闪闪映易完成签到 ,获得积分10
3分钟前
3分钟前
吕易巧发布了新的文献求助10
3分钟前
吕易巧完成签到,获得积分10
3分钟前
3分钟前
Liiiiiiiiii发布了新的文献求助10
4分钟前
XuchaoD完成签到,获得积分10
4分钟前
4分钟前
今后应助Liiiiiiiiii采纳,获得10
4分钟前
顾矜应助科研通管家采纳,获得10
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990049
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256354
捐赠科研通 3270976
什么是DOI,文献DOI怎么找? 1805166
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228