Bearing fault feature extraction measure using multi-layer noise reduction technology

特征提取 峰度 模式识别(心理学) 人工智能 断层(地质) 计算机科学 方位(导航) 噪音(视频) 降噪 特征(语言学) 信号(编程语言) 度量(数据仓库) 支持向量机 数据挖掘 数学 统计 哲学 地质学 地震学 图像(数学) 程序设计语言 语言学
作者
Le Yang,Cao Liang,Jinglin Wang,Yao Xiaohan,Yong Shen,Wu Yingjian
标识
DOI:10.1109/sdpc55702.2022.9915997
摘要

The fault signals of rolling bearings are nonlinear and non-stationary, then it is difficult to extract fault feature of rolling bearings. In order to improve the accuracy of bearing fault diagnosis, a new feature extraction method based on multi-layer noise reduction is proposed in this paper. The proposed method first uses EVMD method to process the original signal, firstly, adding noise to the original signal. Then VMD algorithm is used to decompose the signal multiple times, and several components with more original information were retained and reconstructed. On the basis of the above reconstructed signals, features are extracted by MEMD method. Firstly, setting the Times of EMD measure; After each EMD decomposition, the kurtosis values of IMF components are calculated and several IMF components with large kurtosis values are retained; Finally, several selected components are weighted and fused to form fault feature vectors of bearings. The feature extraction of the proposed method was completed by using the bearing data set of Xi 'an Jiao tong Lei yaguo team. In order to verify the advantage of the proposed algorithm in this paper, the SVM algorithm is adopted to classify the fault features, and compared with the features extraction results of VMD and EMD methods alone, measure is proposed in this paper has higher classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chandler完成签到,获得积分10
刚刚
刚刚
科研通AI5应助xmyyy采纳,获得10
刚刚
顺利初露关注了科研通微信公众号
1秒前
真实的幻柏完成签到,获得积分20
1秒前
千堆雪发布了新的文献求助10
1秒前
馒头驳回了英姑应助
2秒前
yeyuchenfeng发布了新的文献求助10
2秒前
2秒前
搜集达人应助王晓采纳,获得10
2秒前
招财小茗发布了新的文献求助20
2秒前
2秒前
科研通AI2S应助摆烂的鲲采纳,获得10
3秒前
冷傲汽车完成签到,获得积分10
4秒前
4秒前
4秒前
xy关注了科研通微信公众号
5秒前
汤圆完成签到,获得积分10
5秒前
5秒前
5秒前
奉天BB机发布了新的文献求助80
6秒前
6秒前
科研通AI5应助小葛采纳,获得10
7秒前
冷傲汽车发布了新的文献求助20
7秒前
hanatae完成签到,获得积分10
7秒前
chd发布了新的文献求助10
8秒前
Chandler发布了新的文献求助10
8秒前
8秒前
8秒前
简单的思松完成签到,获得积分10
8秒前
英俊的铭应助西尔多采纳,获得10
9秒前
烟花应助早日毕业采纳,获得10
9秒前
简单应助自由念露采纳,获得10
9秒前
9秒前
超帅的麦片完成签到 ,获得积分10
9秒前
9秒前
9秒前
xinyue发布了新的文献求助10
9秒前
10秒前
MorningStar发布了新的文献求助10
10秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474364
求助须知:如何正确求助?哪些是违规求助? 3066657
关于积分的说明 9100024
捐赠科研通 2757911
什么是DOI,文献DOI怎么找? 1513227
邀请新用户注册赠送积分活动 699469
科研通“疑难数据库(出版商)”最低求助积分说明 698986