Bearing fault feature extraction measure using multi-layer noise reduction technology

特征提取 峰度 模式识别(心理学) 人工智能 断层(地质) 计算机科学 方位(导航) 噪音(视频) 降噪 特征(语言学) 信号(编程语言) 度量(数据仓库) 支持向量机 数据挖掘 数学 统计 哲学 地质学 地震学 图像(数学) 程序设计语言 语言学
作者
Le Yang,Cao Liang,Jinglin Wang,Yao Xiaohan,Yong Shen,Wu Yingjian
标识
DOI:10.1109/sdpc55702.2022.9915997
摘要

The fault signals of rolling bearings are nonlinear and non-stationary, then it is difficult to extract fault feature of rolling bearings. In order to improve the accuracy of bearing fault diagnosis, a new feature extraction method based on multi-layer noise reduction is proposed in this paper. The proposed method first uses EVMD method to process the original signal, firstly, adding noise to the original signal. Then VMD algorithm is used to decompose the signal multiple times, and several components with more original information were retained and reconstructed. On the basis of the above reconstructed signals, features are extracted by MEMD method. Firstly, setting the Times of EMD measure; After each EMD decomposition, the kurtosis values of IMF components are calculated and several IMF components with large kurtosis values are retained; Finally, several selected components are weighted and fused to form fault feature vectors of bearings. The feature extraction of the proposed method was completed by using the bearing data set of Xi 'an Jiao tong Lei yaguo team. In order to verify the advantage of the proposed algorithm in this paper, the SVM algorithm is adopted to classify the fault features, and compared with the features extraction results of VMD and EMD methods alone, measure is proposed in this paper has higher classification accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wind应助愉快小猪采纳,获得10
刚刚
10086发布了新的文献求助10
刚刚
上官若男应助无心的月亮采纳,获得10
1秒前
aaa发布了新的文献求助10
1秒前
1秒前
1秒前
Alan发布了新的文献求助10
1秒前
得意黑发布了新的文献求助10
1秒前
Honghao完成签到,获得积分10
2秒前
stiger应助111采纳,获得50
2秒前
ppat5012发布了新的文献求助10
2秒前
zhangsf88完成签到,获得积分10
2秒前
ioii完成签到,获得积分10
2秒前
情怀应助JansonLin采纳,获得10
2秒前
左丘易梦发布了新的文献求助10
2秒前
2秒前
3秒前
hcy完成签到,获得积分10
3秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
guozizi应助科研通管家采纳,获得20
4秒前
王w应助科研通管家采纳,获得30
4秒前
ii发布了新的文献求助10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
Momomo应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444