External validation of a clinical prediction model in multiple sclerosis

中止 医学 队列 多发性硬化 疾病 队列研究 物理疗法 内科学 儿科 精神科
作者
Nahid Moradi,Sifat Sharmin,Charles B. Malpas,Vahid Shaygannejad,Murat Terzi,Cavit Boz,Bassem Yamout,Samia J. Khoury,Recai Türkoğlu,Rana Karabudak,Nevin Shalaby,Aysun Soysal,Ayşe Altıntaş,Jihad Inshasi,Talal Al‐Harbi,Raed Alroughani,Tomáš Kalinčík
出处
期刊:Multiple Sclerosis Journal [SAGE Publishing]
卷期号:29 (2): 261-269
标识
DOI:10.1177/13524585221136036
摘要

Timely initiation of disease modifying therapy is crucial for managing multiple sclerosis (MS).We aimed to validate a previously published predictive model of individual treatment response using a non-overlapping cohort from the Middle East.We interrogated the MSBase registry for patients who were not included in the initial model development. These patients had relapsing MS or clinically isolated syndrome, a recorded date of disease onset, disability and dates of disease modifying therapy, with sufficient follow-up pre- and post-baseline. Baseline was the visit at which a new disease modifying therapy was initiated, and which served as the start of the predicted period. The original models were used to translate clinical information into three principal components and to predict probability of relapses, disability worsening or improvement, conversion to secondary progressive MS and treatment discontinuation as well as changes in the area under disability-time curve (ΔAUC). Prediction accuracy was assessed using the criteria published previously.The models performed well for predicting the risk of disability worsening and improvement (accuracy: 81%-96%) and performed moderately well for predicting the risk of relapses (accuracy: 73%-91%). The predictions for ΔAUC and risk of treatment discontinuation were suboptimal (accuracy < 44%). Accuracy for predicting the risk of conversion to secondary progressive MS ranged from 50% to 98%.The previously published models are generalisable to patients with a broad range of baseline characteristics in different geographic regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花Cheung完成签到,获得积分10
1秒前
kkkkkkk_发布了新的文献求助10
2秒前
bringlingling发布了新的文献求助10
2秒前
2秒前
东郭秋凌完成签到,获得积分10
2秒前
eagle发布了新的文献求助10
2秒前
crazystone完成签到 ,获得积分10
3秒前
3秒前
xiax03完成签到,获得积分10
4秒前
董小天天完成签到,获得积分10
4秒前
子车茗应助cj819采纳,获得20
4秒前
4秒前
Lu完成签到,获得积分10
4秒前
鹤轸完成签到,获得积分10
4秒前
lixinlong发布了新的文献求助10
5秒前
完美世界应助kkkkkkk_采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
湛湛蓝完成签到,获得积分10
7秒前
22鱼完成签到,获得积分10
7秒前
lisa完成签到,获得积分10
7秒前
FG发布了新的文献求助10
7秒前
duts完成签到 ,获得积分10
8秒前
8秒前
赵十一完成签到,获得积分10
9秒前
Joshua完成签到,获得积分10
9秒前
ren发布了新的文献求助10
9秒前
9秒前
阿莫西林胶囊完成签到,获得积分10
9秒前
拿捏陕科大完成签到,获得积分10
11秒前
11秒前
12秒前
热情高跟鞋完成签到,获得积分10
12秒前
12秒前
coco完成签到,获得积分10
13秒前
Lab夜归人发布了新的文献求助10
13秒前
wwewew完成签到,获得积分10
13秒前
lmh发布了新的文献求助10
14秒前
humomo完成签到,获得积分20
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661487
求助须知:如何正确求助?哪些是违规求助? 3222499
关于积分的说明 9746283
捐赠科研通 2932184
什么是DOI,文献DOI怎么找? 1605480
邀请新用户注册赠送积分活动 757926
科研通“疑难数据库(出版商)”最低求助积分说明 734579