亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 噪音(视频) 模式识别(心理学) 人工神经网络 振动 试验装置 特征提取 集合(抽象数据类型) 信号(编程语言) 工程类 声学 物理 地质学 图像(数学) 地震学 程序设计语言
作者
Maoyou Ye,Xiaoan Yan,Ning Chen,Minping Jia
出处
期刊:Applied Acoustics [Elsevier]
卷期号:202: 109143-109143 被引量:19
标识
DOI:10.1016/j.apacoust.2022.109143
摘要

When the rolling bearing fails, the fault features contained in bearing vibration signal are easily submerged by fortissimo noise interference signals, and have obvious non-stationary and nonlinear properties. This means that it is extremely challenging to acquire useful bearing fault features and identify bearing fault patterns effectively by traditional diagnosis methods. To more efficiently learn bearing fault information and improve bearing fault diagnosis accuracy, this research proposes a new intelligent fault diagnosis method for rolling bearing based on variational mode extraction (VME) and an improved one-dimensional convolutional neural network (I-1DCNN). Firstly, a new adaptive signal processing method named VME is employed to handle the collected bearing vibration signals with the aim of obtaining the desired mode component and removing the noise interference information. Meanwhile, the extracted mode components are randomly divided into the training set, validation set and test set. Then, the training set and validation set are input into the proposed I-1DCNN model for training, where the proposed I-1DCNN model may not only learn the discriminant features intelligently, but also boost the computational efficiency and alleviate the problem of over-fitting by incorporating the early stopping method and self-attention mechanism into the traditional one-dimensional convolutional neural network (1DCNN). Finally, the test set is input into the well-trained I-1DCNN to realize the automatic identification of different fault types of rolling bearing. The effectiveness of the suggested method is illustrated by analyzing two experimental data sets. In addition, by comparing with other representative methods, the superiority of the proposed method is testified in bearing health condition identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyc666完成签到,获得积分20
6秒前
7秒前
8秒前
OCDer发布了新的文献求助1050
9秒前
yyc666发布了新的文献求助10
15秒前
deswin发布了新的文献求助10
17秒前
Tomice发布了新的文献求助40
21秒前
两仪完成签到,获得积分10
23秒前
两仪发布了新的文献求助10
25秒前
追寻的纸鹤完成签到 ,获得积分10
30秒前
轻松冰旋应助yyc666采纳,获得10
31秒前
35秒前
Leo完成签到,获得积分10
36秒前
vxxfa完成签到 ,获得积分10
38秒前
Leo发布了新的文献求助10
40秒前
安安应助阿尼亚采纳,获得10
40秒前
Tomice发布了新的文献求助40
41秒前
42秒前
lz完成签到 ,获得积分10
44秒前
44秒前
LL发布了新的文献求助10
49秒前
沐沐心完成签到 ,获得积分10
53秒前
CipherSage应助科研通管家采纳,获得10
59秒前
1分钟前
1分钟前
fleeper发布了新的文献求助10
1分钟前
浅尝离白应助LL采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
bon999完成签到,获得积分10
1分钟前
LL完成签到,获得积分20
1分钟前
阿恺发布了新的文献求助10
1分钟前
zhl完成签到,获得积分10
1分钟前
atdawn1998完成签到 ,获得积分10
1分钟前
并肩完成签到,获得积分10
1分钟前
bon999发布了新的文献求助10
1分钟前
1分钟前
Delight完成签到 ,获得积分10
1分钟前
麻辣小龙虾完成签到,获得积分10
2分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139490
求助须知:如何正确求助?哪些是违规求助? 2790349
关于积分的说明 7795082
捐赠科研通 2446818
什么是DOI,文献DOI怎么找? 1301448
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146