Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 噪音(视频) 模式识别(心理学) 人工神经网络 振动 试验装置 特征提取 信号(编程语言) 工程类 声学 地震学 地质学 物理 程序设计语言 图像(数学)
作者
Maoyou Ye,Xiaoan Yan,Ning Chen,Minping Jia
出处
期刊:Applied Acoustics [Elsevier]
卷期号:202: 109143-109143 被引量:53
标识
DOI:10.1016/j.apacoust.2022.109143
摘要

When the rolling bearing fails, the fault features contained in bearing vibration signal are easily submerged by fortissimo noise interference signals, and have obvious non-stationary and nonlinear properties. This means that it is extremely challenging to acquire useful bearing fault features and identify bearing fault patterns effectively by traditional diagnosis methods. To more efficiently learn bearing fault information and improve bearing fault diagnosis accuracy, this research proposes a new intelligent fault diagnosis method for rolling bearing based on variational mode extraction (VME) and an improved one-dimensional convolutional neural network (I-1DCNN). Firstly, a new adaptive signal processing method named VME is employed to handle the collected bearing vibration signals with the aim of obtaining the desired mode component and removing the noise interference information. Meanwhile, the extracted mode components are randomly divided into the training set, validation set and test set. Then, the training set and validation set are input into the proposed I-1DCNN model for training, where the proposed I-1DCNN model may not only learn the discriminant features intelligently, but also boost the computational efficiency and alleviate the problem of over-fitting by incorporating the early stopping method and self-attention mechanism into the traditional one-dimensional convolutional neural network (1DCNN). Finally, the test set is input into the well-trained I-1DCNN to realize the automatic identification of different fault types of rolling bearing. The effectiveness of the suggested method is illustrated by analyzing two experimental data sets. In addition, by comparing with other representative methods, the superiority of the proposed method is testified in bearing health condition identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
游悠悠发布了新的文献求助10
刚刚
刚刚
风趣飞柏发布了新的文献求助10
刚刚
han发布了新的文献求助10
刚刚
劳恩特应助熊芳妮采纳,获得30
1秒前
wangyang完成签到 ,获得积分10
1秒前
1秒前
爆米花应助tao采纳,获得80
1秒前
1秒前
小心胖虎完成签到,获得积分20
2秒前
2秒前
dong0511发布了新的文献求助10
3秒前
共享精神应助小张医生采纳,获得10
4秒前
bkagyin应助jy采纳,获得30
4秒前
4秒前
5秒前
5秒前
LIKO完成签到,获得积分10
6秒前
7秒前
7秒前
Yiyyan发布了新的文献求助30
7秒前
搜集达人应助小鲤鱼本鱼采纳,获得10
8秒前
古枂完成签到,获得积分10
8秒前
舒适花瓣完成签到,获得积分10
9秒前
情怀应助蝶步韶华采纳,获得10
9秒前
9秒前
junjunjun发布了新的文献求助10
10秒前
xzlijingjing发布了新的文献求助10
10秒前
10秒前
子忧发布了新的文献求助10
11秒前
11秒前
mdomse2109完成签到,获得积分10
12秒前
alisa完成签到 ,获得积分20
12秒前
13秒前
112发布了新的文献求助10
13秒前
1851611453完成签到 ,获得积分10
14秒前
眉洛完成签到,获得积分10
15秒前
传奇3应助灵山剑侠采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406668
求助须知:如何正确求助?哪些是违规求助? 4524470
关于积分的说明 14098590
捐赠科研通 4438297
什么是DOI,文献DOI怎么找? 2436104
邀请新用户注册赠送积分活动 1428223
关于科研通互助平台的介绍 1406294