Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 噪音(视频) 模式识别(心理学) 人工神经网络 振动 试验装置 特征提取 信号(编程语言) 工程类 声学 地震学 地质学 物理 程序设计语言 图像(数学)
作者
Maoyou Ye,Xiaoan Yan,Ning Chen,Minping Jia
出处
期刊:Applied Acoustics [Elsevier]
卷期号:202: 109143-109143 被引量:53
标识
DOI:10.1016/j.apacoust.2022.109143
摘要

When the rolling bearing fails, the fault features contained in bearing vibration signal are easily submerged by fortissimo noise interference signals, and have obvious non-stationary and nonlinear properties. This means that it is extremely challenging to acquire useful bearing fault features and identify bearing fault patterns effectively by traditional diagnosis methods. To more efficiently learn bearing fault information and improve bearing fault diagnosis accuracy, this research proposes a new intelligent fault diagnosis method for rolling bearing based on variational mode extraction (VME) and an improved one-dimensional convolutional neural network (I-1DCNN). Firstly, a new adaptive signal processing method named VME is employed to handle the collected bearing vibration signals with the aim of obtaining the desired mode component and removing the noise interference information. Meanwhile, the extracted mode components are randomly divided into the training set, validation set and test set. Then, the training set and validation set are input into the proposed I-1DCNN model for training, where the proposed I-1DCNN model may not only learn the discriminant features intelligently, but also boost the computational efficiency and alleviate the problem of over-fitting by incorporating the early stopping method and self-attention mechanism into the traditional one-dimensional convolutional neural network (1DCNN). Finally, the test set is input into the well-trained I-1DCNN to realize the automatic identification of different fault types of rolling bearing. The effectiveness of the suggested method is illustrated by analyzing two experimental data sets. In addition, by comparing with other representative methods, the superiority of the proposed method is testified in bearing health condition identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
万能图书馆应助qqqq采纳,获得30
1秒前
微笑爆米花应助自信的采纳,获得10
1秒前
fahbfafajk完成签到,获得积分10
1秒前
追光者发布了新的文献求助10
2秒前
Ann发布了新的文献求助10
2秒前
开心网络完成签到 ,获得积分10
2秒前
左丽君发布了新的文献求助10
2秒前
4秒前
高兴的小完成签到,获得积分10
4秒前
如意2023发布了新的文献求助10
4秒前
5秒前
shutong完成签到,获得积分10
6秒前
霸气乐菱发布了新的文献求助10
6秒前
6秒前
李健的小迷弟应助井子肉采纳,获得10
6秒前
赘婿应助求知采纳,获得10
6秒前
Owen应助Ann采纳,获得10
8秒前
8秒前
烟花应助苦行僧采纳,获得10
8秒前
在水一方应助su采纳,获得10
9秒前
ceeray23应助Dean采纳,获得200
9秒前
我吃小饼干完成签到 ,获得积分10
10秒前
1234完成签到,获得积分10
10秒前
pandaxiaoxi完成签到,获得积分10
10秒前
10秒前
开放的玉米完成签到,获得积分10
10秒前
11秒前
yurunxintian完成签到,获得积分10
11秒前
gqq发布了新的文献求助10
12秒前
12秒前
脑洞疼应助zhang采纳,获得10
13秒前
ds发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
懒洋洋发布了新的文献求助10
15秒前
追寻念珍发布了新的文献求助30
16秒前
热情蜗牛发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572586
求助须知:如何正确求助?哪些是违规求助? 4658232
关于积分的说明 14721857
捐赠科研通 4598413
什么是DOI,文献DOI怎么找? 2523791
邀请新用户注册赠送积分活动 1494485
关于科研通互助平台的介绍 1464549