亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 噪音(视频) 模式识别(心理学) 人工神经网络 振动 试验装置 特征提取 信号(编程语言) 工程类 声学 地震学 地质学 物理 程序设计语言 图像(数学)
作者
Maoyou Ye,Xiaoan Yan,Ning Chen,Minping Jia
出处
期刊:Applied Acoustics [Elsevier]
卷期号:202: 109143-109143 被引量:80
标识
DOI:10.1016/j.apacoust.2022.109143
摘要

When the rolling bearing fails, the fault features contained in bearing vibration signal are easily submerged by fortissimo noise interference signals, and have obvious non-stationary and nonlinear properties. This means that it is extremely challenging to acquire useful bearing fault features and identify bearing fault patterns effectively by traditional diagnosis methods. To more efficiently learn bearing fault information and improve bearing fault diagnosis accuracy, this research proposes a new intelligent fault diagnosis method for rolling bearing based on variational mode extraction (VME) and an improved one-dimensional convolutional neural network (I-1DCNN). Firstly, a new adaptive signal processing method named VME is employed to handle the collected bearing vibration signals with the aim of obtaining the desired mode component and removing the noise interference information. Meanwhile, the extracted mode components are randomly divided into the training set, validation set and test set. Then, the training set and validation set are input into the proposed I-1DCNN model for training, where the proposed I-1DCNN model may not only learn the discriminant features intelligently, but also boost the computational efficiency and alleviate the problem of over-fitting by incorporating the early stopping method and self-attention mechanism into the traditional one-dimensional convolutional neural network (1DCNN). Finally, the test set is input into the well-trained I-1DCNN to realize the automatic identification of different fault types of rolling bearing. The effectiveness of the suggested method is illustrated by analyzing two experimental data sets. In addition, by comparing with other representative methods, the superiority of the proposed method is testified in bearing health condition identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jcksonzhj发布了新的文献求助10
15秒前
yangyang完成签到,获得积分20
51秒前
Cc完成签到 ,获得积分10
58秒前
1分钟前
NattyPoe发布了新的文献求助10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得80
1分钟前
尼古拉斯铁柱完成签到 ,获得积分10
1分钟前
3sigma完成签到,获得积分10
1分钟前
jcksonzhj完成签到,获得积分10
1分钟前
2分钟前
Jasper应助ziyue采纳,获得10
2分钟前
NattyPoe发布了新的文献求助10
2分钟前
史前巨怪完成签到,获得积分0
2分钟前
2分钟前
Jerry完成签到 ,获得积分10
2分钟前
带点脑子读研求求你了完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
上官若男应助大晨采纳,获得10
3分钟前
3分钟前
NattyPoe发布了新的文献求助10
3分钟前
3分钟前
你好发布了新的文献求助10
4分钟前
科目三应助你好采纳,获得10
4分钟前
Danta发布了新的文献求助10
4分钟前
5分钟前
ziyue发布了新的文献求助10
5分钟前
5分钟前
大晨发布了新的文献求助10
5分钟前
5分钟前
river_121发布了新的文献求助10
5分钟前
Lan完成签到 ,获得积分10
5分钟前
大模型应助1123048683wm采纳,获得10
5分钟前
mxczsl完成签到,获得积分10
5分钟前
6分钟前
6分钟前
腰突患者的科研完成签到,获得积分10
6分钟前
思源应助大晨采纳,获得10
6分钟前
tianshanfeihe完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635044
求助须知:如何正确求助?哪些是违规求助? 4734672
关于积分的说明 14989679
捐赠科研通 4792784
什么是DOI,文献DOI怎么找? 2559896
邀请新用户注册赠送积分活动 1520161
关于科研通互助平台的介绍 1480221