亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 噪音(视频) 模式识别(心理学) 人工神经网络 振动 试验装置 特征提取 信号(编程语言) 工程类 声学 地震学 地质学 物理 程序设计语言 图像(数学)
作者
Maoyou Ye,Xiaoan Yan,Ning Chen,Minping Jia
出处
期刊:Applied Acoustics [Elsevier]
卷期号:202: 109143-109143 被引量:80
标识
DOI:10.1016/j.apacoust.2022.109143
摘要

When the rolling bearing fails, the fault features contained in bearing vibration signal are easily submerged by fortissimo noise interference signals, and have obvious non-stationary and nonlinear properties. This means that it is extremely challenging to acquire useful bearing fault features and identify bearing fault patterns effectively by traditional diagnosis methods. To more efficiently learn bearing fault information and improve bearing fault diagnosis accuracy, this research proposes a new intelligent fault diagnosis method for rolling bearing based on variational mode extraction (VME) and an improved one-dimensional convolutional neural network (I-1DCNN). Firstly, a new adaptive signal processing method named VME is employed to handle the collected bearing vibration signals with the aim of obtaining the desired mode component and removing the noise interference information. Meanwhile, the extracted mode components are randomly divided into the training set, validation set and test set. Then, the training set and validation set are input into the proposed I-1DCNN model for training, where the proposed I-1DCNN model may not only learn the discriminant features intelligently, but also boost the computational efficiency and alleviate the problem of over-fitting by incorporating the early stopping method and self-attention mechanism into the traditional one-dimensional convolutional neural network (1DCNN). Finally, the test set is input into the well-trained I-1DCNN to realize the automatic identification of different fault types of rolling bearing. The effectiveness of the suggested method is illustrated by analyzing two experimental data sets. In addition, by comparing with other representative methods, the superiority of the proposed method is testified in bearing health condition identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
10秒前
21秒前
曲线发布了新的文献求助10
24秒前
缓慢逍遥完成签到 ,获得积分10
28秒前
赘婿应助Ade107采纳,获得10
28秒前
科研启动发布了新的文献求助10
31秒前
38秒前
lele发布了新的文献求助10
42秒前
曲线完成签到,获得积分10
57秒前
科研通AI6应助zhdhh采纳,获得10
1分钟前
无奈的靖仇完成签到,获得积分10
1分钟前
1分钟前
1分钟前
呼延水云发布了新的文献求助10
1分钟前
要减肥的胖子应助周周采纳,获得10
1分钟前
1分钟前
科研通AI6应助George采纳,获得10
1分钟前
斯文败类应助Aurora采纳,获得10
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
2分钟前
Ade107发布了新的文献求助10
2分钟前
2分钟前
宓广缘完成签到 ,获得积分10
2分钟前
应寒年完成签到 ,获得积分10
2分钟前
Ava应助靓丽的珊珊采纳,获得10
2分钟前
2分钟前
2分钟前
carols发布了新的文献求助10
2分钟前
小马甲应助Ade107采纳,获得10
2分钟前
Thi发布了新的文献求助10
2分钟前
靓丽衫完成签到 ,获得积分10
2分钟前
qiuzhiri完成签到,获得积分10
2分钟前
小二郎应助George采纳,获得10
2分钟前
2分钟前
2分钟前
在水一方应助qiuzhiri采纳,获得10
2分钟前
Nightfall发布了新的文献求助10
3分钟前
善学以致用应助LALA采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639537
求助须知:如何正确求助?哪些是违规求助? 4748939
关于积分的说明 15006656
捐赠科研通 4797713
什么是DOI,文献DOI怎么找? 2563741
邀请新用户注册赠送积分活动 1522710
关于科研通互助平台的介绍 1482425