Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 噪音(视频) 模式识别(心理学) 人工神经网络 振动 试验装置 特征提取 信号(编程语言) 工程类 声学 地震学 地质学 物理 程序设计语言 图像(数学)
作者
Maoyou Ye,Xiaoan Yan,Ning Chen,Minping Jia
出处
期刊:Applied Acoustics [Elsevier]
卷期号:202: 109143-109143 被引量:80
标识
DOI:10.1016/j.apacoust.2022.109143
摘要

When the rolling bearing fails, the fault features contained in bearing vibration signal are easily submerged by fortissimo noise interference signals, and have obvious non-stationary and nonlinear properties. This means that it is extremely challenging to acquire useful bearing fault features and identify bearing fault patterns effectively by traditional diagnosis methods. To more efficiently learn bearing fault information and improve bearing fault diagnosis accuracy, this research proposes a new intelligent fault diagnosis method for rolling bearing based on variational mode extraction (VME) and an improved one-dimensional convolutional neural network (I-1DCNN). Firstly, a new adaptive signal processing method named VME is employed to handle the collected bearing vibration signals with the aim of obtaining the desired mode component and removing the noise interference information. Meanwhile, the extracted mode components are randomly divided into the training set, validation set and test set. Then, the training set and validation set are input into the proposed I-1DCNN model for training, where the proposed I-1DCNN model may not only learn the discriminant features intelligently, but also boost the computational efficiency and alleviate the problem of over-fitting by incorporating the early stopping method and self-attention mechanism into the traditional one-dimensional convolutional neural network (1DCNN). Finally, the test set is input into the well-trained I-1DCNN to realize the automatic identification of different fault types of rolling bearing. The effectiveness of the suggested method is illustrated by analyzing two experimental data sets. In addition, by comparing with other representative methods, the superiority of the proposed method is testified in bearing health condition identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫问儿完成签到 ,获得积分10
刚刚
刚刚
研友_8QxN1Z发布了新的文献求助10
刚刚
dyuguo3完成签到 ,获得积分10
刚刚
甜甜圈发布了新的文献求助10
刚刚
刚刚
饱满凌波完成签到,获得积分10
刚刚
ying完成签到,获得积分10
1秒前
1秒前
xl1990完成签到,获得积分10
1秒前
罗兴鲜完成签到,获得积分10
1秒前
Ava应助善良幼南采纳,获得10
2秒前
2秒前
素人渔夫完成签到,获得积分10
2秒前
3秒前
KX2024完成签到,获得积分10
3秒前
王某完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
xwwx发布了新的文献求助10
4秒前
clouds完成签到,获得积分10
4秒前
At发布了新的文献求助10
4秒前
伶俐的秋灵完成签到,获得积分10
5秒前
韩璐发布了新的文献求助10
5秒前
lisastream完成签到,获得积分10
5秒前
爆米花应助Dreamer.采纳,获得10
5秒前
5秒前
懵懂的采梦应助静仰星空采纳,获得10
5秒前
共享精神应助know采纳,获得10
5秒前
芜湖完成签到,获得积分10
6秒前
6秒前
波比大王发布了新的文献求助10
6秒前
十九发布了新的文献求助10
6秒前
YMY完成签到,获得积分10
6秒前
cy完成签到,获得积分10
7秒前
7秒前
巴啦啦完成签到,获得积分10
7秒前
7秒前
8秒前
SV完成签到,获得积分20
8秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699375
求助须知:如何正确求助?哪些是违规求助? 5130580
关于积分的说明 15225579
捐赠科研通 4854309
什么是DOI,文献DOI怎么找? 2604571
邀请新用户注册赠送积分活动 1556027
关于科研通互助平台的介绍 1514304