Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 噪音(视频) 模式识别(心理学) 人工神经网络 振动 试验装置 特征提取 信号(编程语言) 工程类 声学 地震学 地质学 物理 程序设计语言 图像(数学)
作者
Maoyou Ye,Xiaoan Yan,Ning Chen,Minping Jia
出处
期刊:Applied Acoustics [Elsevier BV]
卷期号:202: 109143-109143 被引量:53
标识
DOI:10.1016/j.apacoust.2022.109143
摘要

When the rolling bearing fails, the fault features contained in bearing vibration signal are easily submerged by fortissimo noise interference signals, and have obvious non-stationary and nonlinear properties. This means that it is extremely challenging to acquire useful bearing fault features and identify bearing fault patterns effectively by traditional diagnosis methods. To more efficiently learn bearing fault information and improve bearing fault diagnosis accuracy, this research proposes a new intelligent fault diagnosis method for rolling bearing based on variational mode extraction (VME) and an improved one-dimensional convolutional neural network (I-1DCNN). Firstly, a new adaptive signal processing method named VME is employed to handle the collected bearing vibration signals with the aim of obtaining the desired mode component and removing the noise interference information. Meanwhile, the extracted mode components are randomly divided into the training set, validation set and test set. Then, the training set and validation set are input into the proposed I-1DCNN model for training, where the proposed I-1DCNN model may not only learn the discriminant features intelligently, but also boost the computational efficiency and alleviate the problem of over-fitting by incorporating the early stopping method and self-attention mechanism into the traditional one-dimensional convolutional neural network (1DCNN). Finally, the test set is input into the well-trained I-1DCNN to realize the automatic identification of different fault types of rolling bearing. The effectiveness of the suggested method is illustrated by analyzing two experimental data sets. In addition, by comparing with other representative methods, the superiority of the proposed method is testified in bearing health condition identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助风趣钻石采纳,获得10
刚刚
咪嘛捏哞发布了新的文献求助10
刚刚
Ava应助Amelia_Liu采纳,获得30
刚刚
just完成签到,获得积分20
刚刚
江北小赵完成签到,获得积分10
刚刚
1秒前
balabalabala发布了新的文献求助10
2秒前
典雅问寒应助科研小辣鸡采纳,获得10
3秒前
3秒前
百兆完成签到,获得积分10
3秒前
3秒前
阳小颖发布了新的文献求助10
5秒前
5秒前
6秒前
biofresh发布了新的文献求助10
7秒前
科研通AI5应助欧阳采纳,获得10
8秒前
just发布了新的文献求助10
8秒前
8秒前
微笑驳发布了新的文献求助10
8秒前
阿达发布了新的文献求助10
9秒前
11秒前
12秒前
12秒前
12秒前
13秒前
wow发布了新的文献求助10
13秒前
hubert发布了新的文献求助10
13秒前
15秒前
15秒前
Vincent完成签到,获得积分10
15秒前
Amelia_Liu给Amelia_Liu的求助进行了留言
16秒前
小杨完成签到 ,获得积分10
17秒前
17秒前
美丽钢铁侠完成签到,获得积分20
18秒前
18秒前
诗情画奕完成签到,获得积分10
19秒前
开心网络完成签到 ,获得积分10
19秒前
幽默小鸽子完成签到,获得积分10
19秒前
20秒前
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740738
求助须知:如何正确求助?哪些是违规求助? 3283592
关于积分的说明 10035967
捐赠科研通 3000373
什么是DOI,文献DOI怎么找? 1646451
邀请新用户注册赠送积分活动 783642
科研通“疑难数据库(出版商)”最低求助积分说明 750411