Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 噪音(视频) 模式识别(心理学) 人工神经网络 振动 试验装置 特征提取 信号(编程语言) 工程类 声学 地震学 地质学 物理 程序设计语言 图像(数学)
作者
Maoyou Ye,Xiaoan Yan,Ning Chen,Minping Jia
出处
期刊:Applied Acoustics [Elsevier BV]
卷期号:202: 109143-109143 被引量:53
标识
DOI:10.1016/j.apacoust.2022.109143
摘要

When the rolling bearing fails, the fault features contained in bearing vibration signal are easily submerged by fortissimo noise interference signals, and have obvious non-stationary and nonlinear properties. This means that it is extremely challenging to acquire useful bearing fault features and identify bearing fault patterns effectively by traditional diagnosis methods. To more efficiently learn bearing fault information and improve bearing fault diagnosis accuracy, this research proposes a new intelligent fault diagnosis method for rolling bearing based on variational mode extraction (VME) and an improved one-dimensional convolutional neural network (I-1DCNN). Firstly, a new adaptive signal processing method named VME is employed to handle the collected bearing vibration signals with the aim of obtaining the desired mode component and removing the noise interference information. Meanwhile, the extracted mode components are randomly divided into the training set, validation set and test set. Then, the training set and validation set are input into the proposed I-1DCNN model for training, where the proposed I-1DCNN model may not only learn the discriminant features intelligently, but also boost the computational efficiency and alleviate the problem of over-fitting by incorporating the early stopping method and self-attention mechanism into the traditional one-dimensional convolutional neural network (1DCNN). Finally, the test set is input into the well-trained I-1DCNN to realize the automatic identification of different fault types of rolling bearing. The effectiveness of the suggested method is illustrated by analyzing two experimental data sets. In addition, by comparing with other representative methods, the superiority of the proposed method is testified in bearing health condition identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
a成发布了新的文献求助10
1秒前
2秒前
ZYao65发布了新的文献求助10
2秒前
hoo发布了新的文献求助10
2秒前
3秒前
霍三石完成签到,获得积分10
3秒前
慕青应助没有昵称采纳,获得10
3秒前
4秒前
pkaq发布了新的文献求助10
4秒前
4秒前
学术混子发布了新的文献求助10
4秒前
5秒前
windli发布了新的文献求助10
6秒前
7秒前
aaaa发布了新的文献求助10
7秒前
斯文败类应助火鸡味锅巴采纳,获得10
7秒前
英俊的采蓝关注了科研通微信公众号
8秒前
陈一昂发布了新的文献求助10
9秒前
泡泡果发布了新的文献求助10
10秒前
jing发布了新的文献求助20
11秒前
盛事不朽完成签到 ,获得积分10
12秒前
香蕉觅云应助青青草采纳,获得10
12秒前
甜甜的莞完成签到,获得积分20
12秒前
BCKT发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
xhnashui完成签到,获得积分10
13秒前
13秒前
深情安青应助Jc采纳,获得10
15秒前
15秒前
无花果应助泡泡果采纳,获得10
16秒前
橘子橙子发布了新的文献求助30
16秒前
16秒前
xhnashui发布了新的文献求助10
17秒前
滑稽咯完成签到 ,获得积分10
17秒前
19秒前
烟花应助孤独的芒果采纳,获得10
19秒前
哇samm完成签到,获得积分10
19秒前
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011501
求助须知:如何正确求助?哪些是违规求助? 3551133
关于积分的说明 11307791
捐赠科研通 3285391
什么是DOI,文献DOI怎么找? 1811040
邀请新用户注册赠送积分活动 886767
科研通“疑难数据库(出版商)”最低求助积分说明 811636