Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 噪音(视频) 模式识别(心理学) 人工神经网络 振动 试验装置 特征提取 信号(编程语言) 工程类 声学 地震学 地质学 物理 程序设计语言 图像(数学)
作者
Maoyou Ye,Xiaoan Yan,Ning Chen,Minping Jia
出处
期刊:Applied Acoustics [Elsevier]
卷期号:202: 109143-109143 被引量:53
标识
DOI:10.1016/j.apacoust.2022.109143
摘要

When the rolling bearing fails, the fault features contained in bearing vibration signal are easily submerged by fortissimo noise interference signals, and have obvious non-stationary and nonlinear properties. This means that it is extremely challenging to acquire useful bearing fault features and identify bearing fault patterns effectively by traditional diagnosis methods. To more efficiently learn bearing fault information and improve bearing fault diagnosis accuracy, this research proposes a new intelligent fault diagnosis method for rolling bearing based on variational mode extraction (VME) and an improved one-dimensional convolutional neural network (I-1DCNN). Firstly, a new adaptive signal processing method named VME is employed to handle the collected bearing vibration signals with the aim of obtaining the desired mode component and removing the noise interference information. Meanwhile, the extracted mode components are randomly divided into the training set, validation set and test set. Then, the training set and validation set are input into the proposed I-1DCNN model for training, where the proposed I-1DCNN model may not only learn the discriminant features intelligently, but also boost the computational efficiency and alleviate the problem of over-fitting by incorporating the early stopping method and self-attention mechanism into the traditional one-dimensional convolutional neural network (1DCNN). Finally, the test set is input into the well-trained I-1DCNN to realize the automatic identification of different fault types of rolling bearing. The effectiveness of the suggested method is illustrated by analyzing two experimental data sets. In addition, by comparing with other representative methods, the superiority of the proposed method is testified in bearing health condition identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小情绪完成签到 ,获得积分10
刚刚
西奥牧马完成签到 ,获得积分10
1秒前
聪明铸海完成签到,获得积分10
2秒前
美少叔叔完成签到,获得积分10
2秒前
善学以致用应助ding7862采纳,获得10
2秒前
3秒前
闫栋完成签到 ,获得积分10
6秒前
CosnEdge完成签到,获得积分10
7秒前
记得吃早饭完成签到 ,获得积分10
8秒前
南攻完成签到,获得积分10
8秒前
你真是那个啊完成签到,获得积分10
9秒前
弱水完成签到 ,获得积分10
15秒前
在水一方应助山君采纳,获得10
15秒前
睿123完成签到 ,获得积分10
16秒前
星辰大海应助迅速冷霜采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
生信人完成签到 ,获得积分10
20秒前
工科小白完成签到,获得积分10
21秒前
活泼的冬瓜完成签到,获得积分10
21秒前
24秒前
香山叶正红完成签到 ,获得积分10
24秒前
傲娇的凡之完成签到 ,获得积分10
25秒前
WizBLue完成签到,获得积分10
28秒前
dididi完成签到 ,获得积分10
28秒前
宜菏发布了新的文献求助10
29秒前
猜不猜不完成签到 ,获得积分10
29秒前
麦芽糖完成签到,获得积分10
30秒前
科研通AI2S应助babao采纳,获得10
30秒前
滴哩哩哒哒完成签到,获得积分10
32秒前
王kk完成签到 ,获得积分10
33秒前
非哲完成签到 ,获得积分10
33秒前
cai'e完成签到,获得积分10
34秒前
yurunxintian完成签到,获得积分10
34秒前
关远航完成签到,获得积分10
35秒前
logolush完成签到 ,获得积分10
36秒前
lxcy0612完成签到,获得积分10
37秒前
nianshu完成签到 ,获得积分0
40秒前
车剑锋完成签到,获得积分0
42秒前
雨竹完成签到,获得积分10
44秒前
汉堡包应助宜菏采纳,获得20
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685721
关于积分的说明 14838888
捐赠科研通 4673965
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471067