Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 噪音(视频) 模式识别(心理学) 人工神经网络 振动 试验装置 特征提取 信号(编程语言) 工程类 声学 地震学 地质学 物理 程序设计语言 图像(数学)
作者
Maoyou Ye,Xiaoan Yan,Ning Chen,Minping Jia
出处
期刊:Applied Acoustics [Elsevier BV]
卷期号:202: 109143-109143 被引量:53
标识
DOI:10.1016/j.apacoust.2022.109143
摘要

When the rolling bearing fails, the fault features contained in bearing vibration signal are easily submerged by fortissimo noise interference signals, and have obvious non-stationary and nonlinear properties. This means that it is extremely challenging to acquire useful bearing fault features and identify bearing fault patterns effectively by traditional diagnosis methods. To more efficiently learn bearing fault information and improve bearing fault diagnosis accuracy, this research proposes a new intelligent fault diagnosis method for rolling bearing based on variational mode extraction (VME) and an improved one-dimensional convolutional neural network (I-1DCNN). Firstly, a new adaptive signal processing method named VME is employed to handle the collected bearing vibration signals with the aim of obtaining the desired mode component and removing the noise interference information. Meanwhile, the extracted mode components are randomly divided into the training set, validation set and test set. Then, the training set and validation set are input into the proposed I-1DCNN model for training, where the proposed I-1DCNN model may not only learn the discriminant features intelligently, but also boost the computational efficiency and alleviate the problem of over-fitting by incorporating the early stopping method and self-attention mechanism into the traditional one-dimensional convolutional neural network (1DCNN). Finally, the test set is input into the well-trained I-1DCNN to realize the automatic identification of different fault types of rolling bearing. The effectiveness of the suggested method is illustrated by analyzing two experimental data sets. In addition, by comparing with other representative methods, the superiority of the proposed method is testified in bearing health condition identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然凌寒发布了新的文献求助10
刚刚
研友_VZG7GZ应助快乐的朱朱采纳,获得10
刚刚
1秒前
喵喵完成签到 ,获得积分10
2秒前
科研通AI5应助MLT采纳,获得10
2秒前
djbj2022发布了新的文献求助10
4秒前
4秒前
wifi发布了新的文献求助10
4秒前
满意的天完成签到,获得积分10
4秒前
852应助跳跃的大楚采纳,获得10
6秒前
7秒前
顺风顺水顺科研完成签到 ,获得积分10
7秒前
小伊001完成签到,获得积分10
8秒前
Aning完成签到,获得积分10
9秒前
执着烧鹅发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
肥牛芋泥泥完成签到,获得积分10
13秒前
13秒前
顾矜应助勤恳的语蝶采纳,获得10
14秒前
共享精神应助着急的蜗牛采纳,获得10
15秒前
纯粹完成签到,获得积分20
16秒前
16秒前
16秒前
17秒前
18秒前
混沌武士完成签到 ,获得积分10
18秒前
001完成签到,获得积分10
19秒前
李健应助dream采纳,获得10
20秒前
情怀应助快乐的紫寒采纳,获得10
20秒前
kmzzy完成签到 ,获得积分10
20秒前
Moyanmisheng发布了新的文献求助10
21秒前
23秒前
巴拉拉完成签到,获得积分10
25秒前
李大侠完成签到,获得积分10
25秒前
陈老太完成签到 ,获得积分10
26秒前
沉默小笼包完成签到 ,获得积分10
27秒前
楚乐倩发布了新的文献求助10
28秒前
CipherSage应助ocean12138采纳,获得10
28秒前
Moyanmisheng完成签到,获得积分10
28秒前
狂奔的蜗牛完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073477
求助须知:如何正确求助?哪些是违规求助? 4293605
关于积分的说明 13378934
捐赠科研通 4114986
什么是DOI,文献DOI怎么找? 2253333
邀请新用户注册赠送积分活动 1258119
关于科研通互助平台的介绍 1191028