脱氢
氢气储存
氧化钒
催化作用
钒
氢
氧化物
材料科学
无机化学
化学工程
活化能
化学
物理化学
冶金
有机化学
工程类
作者
Guibin Tian,Fuying Wu,Haoyu Zhang,Juan Wei,Hu Zhao,Liuting Zhang
标识
DOI:10.1016/j.jpcs.2022.111187
摘要
MgH2, a solid-state hydrogen storage material with high storage capacity, is facing the obstacles of high thermodynamic stability and slow reaction kinetics. Herein, different Vanadium (V) based catalysts (V2O5, Fe–V and V–Ni oxides) were synthesized by a hydrothermal method and ball milled with MgH2 to modify its hydrogen storage property. It is observed that the dehydrogenation performance (initial dehydrogenation temperature and desorption rate) of Fe–V oxide doped MgH2 was the best, followed by V2O5 and V–Ni oxide modified systems. The MgH2+7 wt% Fe–V composite exhibited an onset dehydrogenation temperature of 200 °C, 128 °C lower compared with the original MgH2. The absorption performance of MgH2 was also greatly enhanced by Fe–V oxide. The 7 wt% Fe–V modified MgH2 after dehydrogenation began to charge hydrogen from 25 °C to 5.1 wt% hydrogen was absorbed at 150 °C. The activation energy for hydrogen uptake of MgH2 was reduced from 76.5 ± 3.4 kJ/mol to 41.2 ± 4.7 kJ/mol. Additionally, the MgH2+7 wt% Fe–V composite maintained 97.2% hydrogen capacity after10 cycles. Our work here proves that elements substitution is a feasible way to tune the catalytic effect of oxides and may shed light on designing catalysts with higher activation in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI