亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable Machine Learning Prediction of Drug-Induced QT Prolongation: Electronic Health Record Analysis

可解释性 医学 机器学习 人工智能 QT间期 深度学习 医学诊断 计算机科学 内科学 病理
作者
S. Simon,Katy E. Trinkley,Daniel C. Malone,Michael A. Rosenberg
出处
期刊:Journal of Medical Internet Research 卷期号:24 (12): e42163-e42163 被引量:7
标识
DOI:10.2196/42163
摘要

Background Drug-induced long-QT syndrome (diLQTS) is a major concern among patients who are hospitalized, for whom prediction models capable of identifying individualized risk could be useful to guide monitoring. We have previously demonstrated the feasibility of machine learning to predict the risk of diLQTS, in which deep learning models provided superior accuracy for risk prediction, although these models were limited by a lack of interpretability. Objective In this investigation, we sought to examine the potential trade-off between interpretability and predictive accuracy with the use of more complex models to identify patients at risk for diLQTS. We planned to compare a deep learning algorithm to predict diLQTS with a more interpretable algorithm based on cluster analysis that would allow medication- and subpopulation-specific evaluation of risk. Methods We examined the risk of diLQTS among 35,639 inpatients treated between 2003 and 2018 with at least 1 of 39 medications associated with risk of diLQTS and who had an electrocardiogram in the system performed within 24 hours of medication administration. Predictors included over 22,000 diagnoses and medications at the time of medication administration, with cases of diLQTS defined as a corrected QT interval over 500 milliseconds after treatment with a culprit medication. The interpretable model was developed using cluster analysis (K=4 clusters), and risk was assessed for specific medications and classes of medications. The deep learning model was created using all predictors within a 6-layer neural network, based on previously identified hyperparameters. Results Among the medications, we found that class III antiarrhythmic medications were associated with increased risk across all clusters, and that in patients who are noncritically ill without cardiovascular disease, propofol was associated with increased risk, whereas ondansetron was associated with decreased risk. Compared with deep learning, the interpretable approach was less accurate (area under the receiver operating characteristic curve: 0.65 vs 0.78), with comparable calibration. Conclusions In summary, we found that an interpretable modeling approach was less accurate, but more clinically applicable, than deep learning for the prediction of diLQTS. Future investigations should consider this trade-off in the development of methods for clinical prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
Tingtingzhang完成签到,获得积分10
29秒前
香蕉觅云应助Tingtingzhang采纳,获得10
33秒前
zqq完成签到,获得积分0
52秒前
啾啾咪咪完成签到,获得积分10
1分钟前
VickyZWY完成签到 ,获得积分20
1分钟前
迷路诗云完成签到 ,获得积分10
1分钟前
CATH完成签到 ,获得积分10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1461644768完成签到,获得积分10
1分钟前
汉堡包应助ccc采纳,获得10
1分钟前
2分钟前
2分钟前
花开半夏发布了新的文献求助10
2分钟前
这个手刹不太灵完成签到 ,获得积分10
2分钟前
调皮千兰发布了新的文献求助10
2分钟前
洋芋发布了新的文献求助10
3分钟前
成就仇天完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
fangjc1024发布了新的文献求助10
3分钟前
烟花应助你hao采纳,获得10
3分钟前
领导范儿应助fangjc1024采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
3分钟前
fangjc1024完成签到,获得积分10
3分钟前
4分钟前
王福栋完成签到,获得积分10
4分钟前
你hao发布了新的文献求助10
4分钟前
你hao完成签到,获得积分10
4分钟前
酷波er应助如沐春风采纳,获得10
4分钟前
lixuebin完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
如沐春风发布了新的文献求助10
5分钟前
yff发布了新的文献求助10
5分钟前
Lshyong完成签到 ,获得积分10
5分钟前
5分钟前
gy完成签到,获得积分10
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146703
求助须知:如何正确求助?哪些是违规求助? 2798015
关于积分的说明 7826552
捐赠科研通 2454516
什么是DOI,文献DOI怎么找? 1306346
科研通“疑难数据库(出版商)”最低求助积分说明 627704
版权声明 601522