Enhanced High‐Temperature Energy Storage Performance of All‐Organic Composite Dielectric via Constructing Fiber‐Reinforced Structure

聚醚酰亚胺 聚酰亚胺 材料科学 复合数 电介质 复合材料 纤维 储能 聚合物 光电子学 量子力学 物理 功率(物理) 图层(电子)
作者
Mengjia Feng,Yu Feng,Changhai Zhang,Tiandong Zhang,Xu Tong,Qiang Gao,Qingguo Chen,Qingguo Chi
出处
期刊:Energy & environmental materials [Wiley]
卷期号:7 (2) 被引量:56
标识
DOI:10.1002/eem2.12571
摘要

Optimizing the high‐temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems. Selecting a polymer with a higher glass transition temperature ( T g ) as the matrix is one of the effective ways to increase the upper limit of the polymer operating temperature. However, current high‐ T g polymers have limitations, and it is difficult to meet the demand for high‐temperature energy storage dielectrics with only one polymer. For example, polyetherimide has high‐energy storage efficiency, but low breakdown strength at high temperatures. Polyimide has high corona resistance, but low high‐temperature energy storage efficiency. In this work, combining the advantages of two polymer, a novel high‐ T g polymer fiber‐reinforced microstructure is designed. Polyimide is designed as extremely fine fibers distributed in the composite dielectric, which will facilitate the reduction of high‐temperature conductivity loss for polyimide. At the same time, due to the high‐temperature resistance and corona resistance of polyimide, the high‐temperature breakdown strength of the composite dielectric is enhanced. After the polyimide content with the best high‐temperature energy storage characteristics is determined, molecular semiconductors (ITIC) are blended into the polyimide fibers to further improve the high‐temperature efficiency. Ultimately, excellent high‐temperature energy storage properties are obtained. The 0.25 vol% ITIC‐polyimide/polyetherimide composite exhibits high‐energy density and high discharge efficiency at 150 °C (2.9 J cm −3 , 90%) and 180 °C (2.16 J cm −3 , 90%). This work provides a scalable design idea for high‐performance all‐organic high‐temperature energy storage dielectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ninini发布了新的文献求助10
刚刚
1秒前
1秒前
今后应助wkc采纳,获得10
1秒前
Dprisk完成签到,获得积分10
2秒前
JJ发布了新的文献求助10
2秒前
丘比特应助阿仔采纳,获得10
2秒前
安溢发布了新的文献求助10
4秒前
4秒前
Dprisk发布了新的文献求助30
5秒前
Babe1934完成签到,获得积分20
6秒前
JJ发布了新的文献求助10
6秒前
JJ发布了新的文献求助10
6秒前
JJ发布了新的文献求助10
6秒前
JJ发布了新的文献求助10
6秒前
JJ发布了新的文献求助10
7秒前
navy发布了新的文献求助10
7秒前
zh完成签到 ,获得积分20
7秒前
Rainsky完成签到,获得积分10
7秒前
汉堡包应助zc采纳,获得10
8秒前
Au完成签到,获得积分10
8秒前
8秒前
zorrial发布了新的文献求助10
8秒前
隐形曼青应助自觉含莲采纳,获得10
9秒前
量子星尘发布了新的文献求助100
10秒前
10秒前
minute完成签到,获得积分20
12秒前
ding应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得30
12秒前
天天快乐应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898874
求助须知:如何正确求助?哪些是违规求助? 4179426
关于积分的说明 12974964
捐赠科研通 3943420
什么是DOI,文献DOI怎么找? 2163330
邀请新用户注册赠送积分活动 1181673
关于科研通互助平台的介绍 1087325