Superpixel-guided multifeature tensor for hyperspectral image classification with limited training samples

模式识别(心理学) 人工智能 张量(固有定义) 相似性(几何) 计算机科学 特征(语言学) 水准点(测量) 维数之咒 染色质结构重塑复合物 高光谱成像 数学 图像(数学) 地质学 化学 基因 核小体 哲学 组蛋白 生物化学 语言学 纯数学 大地测量学
作者
Peng Wang,Chengyong Zheng,Saihua Liu
出处
期刊:Optics and Laser Technology [Elsevier]
卷期号:159: 109020-109020 被引量:3
标识
DOI:10.1016/j.optlastec.2022.109020
摘要

Supervised hyperspectral image (HSI) classification is challenged by the deficiency of labeled samples. The spatial correlation and multifeature have been proved to be very helpful for HSI classification. Thanks to the multiway structure, the tensor can express a sample by its spatial correlation and multifeature. However, integrating heterogeneous features and spatial correlation into a tensor leads to very high data dimensionality, which is fatal for limited training samples case. In addition, most multifeature methods devote to maximizing the agreements on heterogeneous features, while the inherent structures of each specific feature are not noticed. To address these problems, in this paper, we propose a superpixel-guided multifeature tensor (SPGMF) method for HSI classification which associates superpixel (SP) with multifeature through tensor, hence, solving the problem of limited training samples. Specifically, SPs guide to expanding training set as well as capturing local similarity. Subsequently, multifeature pixels from a SP are transformed into a latent space and stacked into a tensor, as a result, SPGMF not only captures the local similarity of HSI but also controls the dimensionality increment. Furthermore, a low-rank and sparse tensor decomposition regularized by multigraph is proposed, so that the consistency of multifeature is maximized and the local structure of a specific feature is preserved. Extensive experiments on three benchmark HSIs demonstrate the effectiveness and superiority of the proposed SPGMF, particularly with very limited training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助一一采纳,获得10
刚刚
腼腆的绝山完成签到,获得积分20
1秒前
脑洞疼应助Wenpandaen采纳,获得10
1秒前
1秒前
2秒前
跳跃尔琴发布了新的文献求助10
2秒前
所所应助虚幻皮卡丘采纳,获得10
3秒前
科研通AI2S应助成就馒头采纳,获得10
6秒前
6秒前
LI完成签到,获得积分10
7秒前
乐乐应助雨霖铃采纳,获得10
9秒前
10秒前
科研通AI2S应助丽丽采纳,获得10
11秒前
13秒前
17秒前
May完成签到,获得积分20
17秒前
一一发布了新的文献求助10
17秒前
国标水果猎人完成签到,获得积分10
18秒前
李健应助YI点半的飞机场采纳,获得10
19秒前
DIDIDI完成签到 ,获得积分10
19秒前
20秒前
科研通AI2S应助洁净之柔采纳,获得30
20秒前
wyy完成签到 ,获得积分10
21秒前
22秒前
跳跃尔琴发布了新的文献求助10
24秒前
嘟嘟金子发布了新的文献求助10
25秒前
25秒前
26秒前
可靠的书桃应助weslywang采纳,获得10
27秒前
LOVER完成签到 ,获得积分10
27秒前
27秒前
小蘑菇应助athena采纳,获得30
27秒前
丽丽完成签到,获得积分20
28秒前
29秒前
hesongwen发布了新的文献求助10
30秒前
墨墨完成签到 ,获得积分10
31秒前
慕容真发布了新的文献求助10
31秒前
33秒前
xiaoou完成签到,获得积分10
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134917
求助须知:如何正确求助?哪些是违规求助? 2785800
关于积分的说明 7774138
捐赠科研通 2441635
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825