More About the Corpus of Involutions From Two-to-One Mappings and Related Cryptographic S-Boxes

密码学 符号 数学 猜想 班级(哲学) 反向 离散数学 组合数学 编码理论 计算机科学 算法 人工智能 算术 几何学
作者
Sihem Mesnager,Mu Yuan,Dabin Zheng
出处
期刊:IEEE Transactions on Information Theory [Institute of Electrical and Electronics Engineers]
卷期号:69 (2): 1315-1327 被引量:4
标识
DOI:10.1109/tit.2022.3211329
摘要

Permutation polynomials have been extensively studied for their applications in cryptography, coding theory, combinatorial design, etc. An important subfamily of permutations is the class of involutions (those permutations are equal to their compositional inverse). Elements of this class have been used frequently for block cipher designs and coding theory. In this article, we further investigate this corpus using new approaches, specifically from two-to-one (2-to-1) functions and (in some cases) using the graph indicators introduced by Carlet in 2020. In our constructions of involutions over the finite field $\mathbb {F}_{2^{n}}$ of order $2^{n}$ , we shall intensively use 2-to-1 mappings over $\mathbb {F}_{2^{n}}$ . More specifically, we present a new constructive method to design involutions from 2-to-1 mappings through their graph indicator and derive new involutions from known 2-to-1 mappings. Besides, we also propose several new classes of 2-to-1 mappings, including 2-to-1 hexanomials, 2-to-1 mappings of the form $(x^{2^{k}}+x+\delta)^{s_{1}}+(x^{2^{k}}+x+\delta)^{s_{2}}+cx$ , and 2-to-1 mappings from linear 2-to-1 mappings. We also exhibit the corresponding involutions of the constructed 2-to-1 mappings. Furthermore, an infinite family of involutions with differential uniformity at most 4 (EA-inequivalent to the inverse function) is obtained. Finally, we highlight that all our derived families of involutions have no fixed point, further accentuating their cryptographic interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
电磁波发布了新的文献求助10
1秒前
Gao完成签到,获得积分20
1秒前
如意行天完成签到,获得积分10
2秒前
schen完成签到,获得积分10
3秒前
自信板栗发布了新的文献求助10
3秒前
6秒前
6秒前
Engen完成签到,获得积分10
7秒前
小蘑菇应助lifeng采纳,获得10
8秒前
wgw完成签到,获得积分10
8秒前
mm完成签到,获得积分10
9秒前
9秒前
hongjing发布了新的文献求助10
10秒前
10秒前
研友_8Kedgn完成签到,获得积分10
10秒前
行走的土豆完成签到,获得积分10
10秒前
李健的小迷弟应助cainiao采纳,获得10
11秒前
mildJYY完成签到,获得积分10
11秒前
QAQ完成签到,获得积分10
12秒前
领导范儿应助忐忑的雪晴采纳,获得10
12秒前
12秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
12秒前
13秒前
13秒前
王木木完成签到,获得积分10
14秒前
自然的岱周完成签到,获得积分10
14秒前
14秒前
14秒前
劉浏琉完成签到,获得积分10
14秒前
梁三岁完成签到,获得积分10
14秒前
14秒前
yxn发布了新的文献求助50
14秒前
时尚听筠完成签到,获得积分10
15秒前
15秒前
深情安青应助cloud采纳,获得10
15秒前
_Charmo发布了新的文献求助10
15秒前
明亮的老四完成签到 ,获得积分10
16秒前
顺利的蘑菇完成签到 ,获得积分10
16秒前
joyemovie发布了新的文献求助10
16秒前
扶丽君完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429