Damage localization in holed Carbon Fiber composite laminates using FBG sensors based on Back-Propagation Neural Network

材料科学 复合材料 复合数 光纤布拉格光栅 复合材料层合板 碳纤维复合材料 纤维 纤维增强塑料 结构工程 碳纤维增强聚合物 工程类 波长 光电子学
作者
Xianfeng Wang,Xiaobo Liu,Guoping Ding,Xiaoyu Yan,Hao Cao
标识
DOI:10.1109/dsit55514.2022.9943829
摘要

Carbon fiber reinforced plastic (CFRP) has better properties. Among all kinds of carbon fiber structural elements, carbon fiber laminates are the most widely used because of their simple structure and easy mass production. However, due to process defects and improper transportation, there will always be some unidentified damage to the carbon fiber composite laminate, and it will continue to expand after loading, which greatly weakens the mechanical properties of the carbon fiber composite laminate. Therefore, it is of very importance to locate the damages of CFRP laminated plates. Firstly, mechanical simulation analysis is made for the holed CFRP laminated plates to gain its strain distribution; the model for the mapping relation between the strain distribution of surface and damage location is built based on BP neural network method; Fiber Bragg Grating (FBG) sensor is stuck on the surface of holed CFRP laminated plates. The surface strain of CFRP laminated plates is measured by the FBG sensor and substituted into the above-mentioned model to predict the damage location of CFRP laminated plates. The experience results indicate that there is a small error between the predicted damage location and the actual one and verify the effectiveness and accuracy of the damage localization method in CFRP laminated plates using FBG sensors based on a neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李繁蕊发布了新的文献求助10
刚刚
4秒前
4秒前
4秒前
4秒前
橘柚完成签到 ,获得积分10
5秒前
zmmmm发布了新的文献求助10
5秒前
领导范儿应助温言采纳,获得10
5秒前
思源应助OvO采纳,获得10
7秒前
迷糊发布了新的文献求助30
8秒前
LY发布了新的文献求助10
9秒前
zzz完成签到,获得积分10
9秒前
KimJongUn完成签到,获得积分10
9秒前
11秒前
11秒前
zy完成签到,获得积分10
12秒前
开心果子发布了新的文献求助10
12秒前
云痴子完成签到,获得积分10
13秒前
SciGPT应助粥粥采纳,获得10
13秒前
13秒前
13秒前
14秒前
苏源完成签到,获得积分10
14秒前
wu关闭了wu文献求助
14秒前
14秒前
15秒前
15秒前
16秒前
16秒前
16秒前
Shawn完成签到,获得积分10
17秒前
yltstt完成签到,获得积分10
18秒前
李小新发布了新的文献求助10
18秒前
成梦发布了新的文献求助10
19秒前
乐乐应助xuex1采纳,获得10
19秒前
蜂鸟5156发布了新的文献求助10
19秒前
李爱国应助VDC采纳,获得10
20秒前
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808