Rock shear creep modelling: DEM – Rate process theory approach

蠕动 岩土工程 粘塑性 剪切(地质) 地质学 离散元法 直剪试验 接头(建筑物) 剪切带 材料科学 机械 结构工程 有限元法 本构方程 工程类 复合材料 物理 构造学 古生物学 岩石学
作者
J. G. Gutiérrez-Ch,S. Senent,E.P. Graterol,Peng Zeng,Rafael E. Jimenez
出处
期刊:International Journal of Rock Mechanics and Mining Sciences [Elsevier BV]
卷期号:161: 105295-105295 被引量:7
标识
DOI:10.1016/j.ijrmms.2022.105295
摘要

Understanding the rock creep behavior is necessary to determine the long-term strength and safety of several geotechnical designs. There are several formulations to study the rock creep; however, most of them do not properly capture the tertiary creep. To overcome such limitation, model improvements have been made and new creep models (e.g., creep models with an associated viscoplastic flow rule) have been proposed. As an alternative, the Rate Process Theory (RPT) has been recently used to study the soil/rock creep behavior. This article expands previous works by analyzing the applicability of the Discrete Element Method (DEM) with RPT implementation to simulate Rock Shear Creep (RSC). To do that, (i) 2D DEM direct shear creep tests under Constant Normal Load (CNL) conditions are used, (ii) DEM specimens are built by a combination of the Flat-Joint Contact Model (FJCM) and the Linear Model (LM), and (iii) the DEM + RPT approach is calibrated by using experimental tests from the literature. DEM results presented here illustrate the suitability of DEM–RPT methodology to reproduce all stages of RSC, including tertiary creep. The effect of the applied shear stress and normal stress on RCS is also analyzed. Finally, the most important novelties of this paper are: (1) the DEM–RPT methodology can be easily calibrated by using a laboratory direct shear creep test; (2) the calibrated DEM models are suitable to analyze the main aspects of RSC; and (3) DEM results qualitatively agree with the overall experimental trend published in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到,获得积分10
刚刚
无心客应助弘一采纳,获得10
刚刚
小雨点Logan完成签到,获得积分10
刚刚
1秒前
20240901发布了新的文献求助10
1秒前
爆米花应助11采纳,获得10
1秒前
桐桐应助biu采纳,获得10
2秒前
打死不穿秋裤完成签到,获得积分10
2秒前
无忧完成签到 ,获得积分10
2秒前
3秒前
杨张浩发布了新的文献求助10
3秒前
3秒前
好久不见发布了新的文献求助10
3秒前
5秒前
5秒前
YangZai发布了新的文献求助10
5秒前
xyyyy发布了新的文献求助10
6秒前
6秒前
7秒前
可爱的函函应助吨吨喝水采纳,获得10
7秒前
拒绝划水发布了新的文献求助10
7秒前
7秒前
美满的书南完成签到,获得积分10
7秒前
Yohann发布了新的文献求助10
8秒前
8秒前
周一发布了新的文献求助10
9秒前
9秒前
9秒前
yt发布了新的文献求助10
10秒前
10秒前
11秒前
顾矜应助wang采纳,获得10
12秒前
12秒前
12秒前
Hello应助lemontea采纳,获得10
13秒前
无花果应助Yohann采纳,获得10
13秒前
zjj完成签到,获得积分10
13秒前
biu完成签到,获得积分10
13秒前
每日签到发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283636
求助须知:如何正确求助?哪些是违规求助? 4437415
关于积分的说明 13813418
捐赠科研通 4318122
什么是DOI,文献DOI怎么找? 2370293
邀请新用户注册赠送积分活动 1365614
关于科研通互助平台的介绍 1329113