Predictive model of employee attrition based on stacking ensemble learning

损耗 计算机科学 国际商用机器公司 二元分析 旷工 预测分析 逻辑回归 工作满意度 机器学习 运营管理 心理学 工程类 社会心理学 纳米技术 材料科学 牙科 医学
作者
Doohee Chung,Jinseop Yun,Jeha Lee,Yeram Jeon
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:215: 119364-119364 被引量:26
标识
DOI:10.1016/j.eswa.2022.119364
摘要

Since human resource is the most important resource of a company, employee attrition is an important agenda from the company's point of view. However, employee attrition occurs due to various reasons, and it is difficult for the HR manager or the leader of each department to know these signs in advance. Employee attrition results in considerable burdens and losses of the organization due to a variety of reasons such as interruption of ongoing tasks, cost of employee re-employment and retraining, and risk of leaking core technologies and know-hows. Therefore, in this study, we propose a model for predicting employee attrition so that we can take measures for talent management which in the past, has been carried out ex post. In this study, a predictive model was constructed based on 30 variables - that affect employee attrition - from the 'IBM HR Analytics Employee Attrition & Performance data', which consists of 1,470 records. To this end, a total of eight predictive models, including Logistic Regression, Random Forest, XGBoost, SVM, Artificial Neural Network model and ensemble model, were built and their performance was evaluated. In addition, when the impact of variables on employee attrition was analyzed, variables such as environmental satisfaction, overtime work, and relationship satisfaction were found to be the biggest contributors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
略略略发布了新的文献求助10
1秒前
2秒前
星辰大海应助林林采纳,获得10
3秒前
清风明月发布了新的文献求助10
5秒前
6秒前
7秒前
炙热甜瓜发布了新的文献求助10
10秒前
CodeCraft应助远方的蓝风铃采纳,获得10
11秒前
11秒前
科研通AI2S应助可爱的电话采纳,获得10
11秒前
grisco发布了新的文献求助10
12秒前
13秒前
不配.应助科研通管家采纳,获得20
13秒前
上官若男应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
完美世界应助史萌采纳,获得10
15秒前
16秒前
共享精神应助轻松刚采纳,获得10
19秒前
21秒前
23秒前
23秒前
24秒前
lfchen完成签到,获得积分10
24秒前
25秒前
26秒前
muggle发布了新的文献求助10
26秒前
27秒前
BPX完成签到,获得积分10
28秒前
小高同学发布了新的文献求助10
29秒前
轨迹发布了新的文献求助15
30秒前
廾匸发布了新的文献求助20
33秒前
zho发布了新的文献求助10
33秒前
科研通AI2S应助清风明月采纳,获得10
34秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136196
求助须知:如何正确求助?哪些是违规求助? 2787119
关于积分的说明 7780500
捐赠科研通 2443236
什么是DOI,文献DOI怎么找? 1298990
科研通“疑难数据库(出版商)”最低求助积分说明 625299
版权声明 600870