Ultra-Low-Power E-Nose System Based on Multi-Micro-LED-Integrated, Nanostructured Gas Sensors and Deep Learning

电子鼻 材料科学 传感器阵列 纳米技术 计算机科学 光电子学 机器学习
作者
Kichul Lee,Incheol Cho,Mingu Kang,Jaeseok Jeong,Minho Choi,Kie Young Woo,Kuk‐Jin Yoon,Yong‐Hoon Cho,Inkyu Park
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (1): 539-551 被引量:43
标识
DOI:10.1021/acsnano.2c09314
摘要

As interests in air quality monitoring related to environmental pollution and industrial safety increase, demands for gas sensors are rapidly increasing. Among various gas sensor types, the semiconductor metal oxide (SMO)-type sensor has advantages of high sensitivity, low cost, mass production, and small size but suffers from poor selectivity. To solve this problem, electronic nose (e-nose) systems using a gas sensor array and pattern recognition are widely used. However, as the number of sensors in the e-nose system increases, total power consumption also increases. In this study, an ultra-low-power e-nose system was developed using ultraviolet (UV) micro-LED (μLED) gas sensors and a convolutional neural network (CNN). A monolithic photoactivated gas sensor was developed by depositing a nanocolumnar In2O3 film coated with plasmonic metal nanoparticles (NPs) directly on the μLED. The e-nose system consists of two different μLED sensors with silver and gold NP coating, and the total power consumption was measured as 0.38 mW, which is one-hundredth of the conventional heater-based e-nose system. Responses to various target gases measured by multi-μLED gas sensors were analyzed by pattern recognition and used as the training data for the CNN algorithm. As a result, a real-time, highly selective e-nose system with a gas classification accuracy of 99.32% and a gas concentration regression error (mean absolute) of 13.82% for five different gases (air, ethanol, NO2, acetone, methanol) was developed. The μLED-based e-nose system can be stably battery-driven for a long period and is expected to be widely used in environmental internet of things (IoT) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
InfoNinja完成签到,获得积分0
2秒前
时空掌门人完成签到,获得积分10
2秒前
LYY完成签到,获得积分10
2秒前
2秒前
凉雨街发布了新的文献求助10
4秒前
jovrtic发布了新的文献求助10
4秒前
香蕉觅云应助无心的土豆采纳,获得10
4秒前
田様应助缥缈映安采纳,获得10
5秒前
pegasus0802完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
不在乎过完成签到,获得积分10
8秒前
9秒前
背后雨柏完成签到 ,获得积分10
9秒前
熊猫宝宝发布了新的文献求助10
9秒前
希望天下0贩的0应助熊高采纳,获得30
9秒前
学分发布了新的文献求助10
13秒前
13秒前
Akim应助chshpy采纳,获得30
13秒前
斯文败类应助不在乎过采纳,获得10
13秒前
18秒前
狼牙月完成签到,获得积分10
19秒前
21秒前
22秒前
小白完成签到 ,获得积分10
22秒前
半岛岛发布了新的文献求助30
23秒前
genoy发布了新的文献求助10
24秒前
调皮汽车完成签到 ,获得积分10
27秒前
熊高给熊高的求助进行了留言
28秒前
西瓜完成签到,获得积分10
30秒前
谷雨发布了新的文献求助10
34秒前
34秒前
35秒前
fffffffq完成签到,获得积分10
36秒前
qqq完成签到 ,获得积分10
37秒前
修路娃发布了新的文献求助30
37秒前
朱小小发布了新的文献求助10
39秒前
酷波er应助科研通管家采纳,获得10
41秒前
科目三应助科研通管家采纳,获得10
41秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140237
求助须知:如何正确求助?哪些是违规求助? 2791023
关于积分的说明 7797649
捐赠科研通 2447480
什么是DOI,文献DOI怎么找? 1301910
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194