Ultra-Low-Power E-Nose System Based on Multi-Micro-LED-Integrated, Nanostructured Gas Sensors and Deep Learning

电子鼻 材料科学 传感器阵列 纳米技术 计算机科学 光电子学 机器学习
作者
Kichul Lee,Incheol Cho,Mingu Kang,Jaeseok Jeong,Minho Choi,Kie Young Woo,Kuk‐Jin Yoon,Yong‐Hoon Cho,Inkyu Park
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (1): 539-551 被引量:76
标识
DOI:10.1021/acsnano.2c09314
摘要

As interests in air quality monitoring related to environmental pollution and industrial safety increase, demands for gas sensors are rapidly increasing. Among various gas sensor types, the semiconductor metal oxide (SMO)-type sensor has advantages of high sensitivity, low cost, mass production, and small size but suffers from poor selectivity. To solve this problem, electronic nose (e-nose) systems using a gas sensor array and pattern recognition are widely used. However, as the number of sensors in the e-nose system increases, total power consumption also increases. In this study, an ultra-low-power e-nose system was developed using ultraviolet (UV) micro-LED (μLED) gas sensors and a convolutional neural network (CNN). A monolithic photoactivated gas sensor was developed by depositing a nanocolumnar In2O3 film coated with plasmonic metal nanoparticles (NPs) directly on the μLED. The e-nose system consists of two different μLED sensors with silver and gold NP coating, and the total power consumption was measured as 0.38 mW, which is one-hundredth of the conventional heater-based e-nose system. Responses to various target gases measured by multi-μLED gas sensors were analyzed by pattern recognition and used as the training data for the CNN algorithm. As a result, a real-time, highly selective e-nose system with a gas classification accuracy of 99.32% and a gas concentration regression error (mean absolute) of 13.82% for five different gases (air, ethanol, NO2, acetone, methanol) was developed. The μLED-based e-nose system can be stably battery-driven for a long period and is expected to be widely used in environmental internet of things (IoT) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pupu完成签到,获得积分10
2秒前
2秒前
5秒前
阿超完成签到,获得积分10
5秒前
LvCR发布了新的文献求助10
6秒前
李健的粉丝团团长应助Mine采纳,获得10
6秒前
coffee发布了新的文献求助10
6秒前
好好好完成签到 ,获得积分20
7秒前
11发布了新的文献求助10
10秒前
阔达的衣完成签到 ,获得积分10
12秒前
13秒前
wei发布了新的文献求助10
13秒前
14秒前
sevenhill应助梅夕阳采纳,获得10
16秒前
nml发布了新的文献求助10
17秒前
FashionBoy应助HJ采纳,获得10
17秒前
Mine发布了新的文献求助10
18秒前
Tracy完成签到,获得积分10
19秒前
舒心凡应助shxxy123采纳,获得50
19秒前
crescendo完成签到,获得积分10
20秒前
Orange应助杨冠渊采纳,获得10
22秒前
23秒前
小zhu关注了科研通微信公众号
25秒前
26秒前
刘康艺发布了新的文献求助10
28秒前
nml完成签到,获得积分10
29秒前
沉默的冬寒完成签到 ,获得积分10
30秒前
大龙哥886应助科研通管家采纳,获得10
32秒前
传奇3应助科研通管家采纳,获得10
32秒前
无花果应助科研通管家采纳,获得10
32秒前
今后应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
大龙哥886应助科研通管家采纳,获得10
32秒前
今后应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
核桃应助科研通管家采纳,获得30
32秒前
浮游应助科研通管家采纳,获得10
32秒前
ZOE应助科研通管家采纳,获得60
32秒前
完美世界应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560180
求助须知:如何正确求助?哪些是违规求助? 4645357
关于积分的说明 14674990
捐赠科研通 4586495
什么是DOI,文献DOI怎么找? 2516447
邀请新用户注册赠送积分活动 1490087
关于科研通互助平台的介绍 1460900