电子鼻
材料科学
传感器阵列
纳米技术
计算机科学
光电子学
机器学习
作者
Kichul Lee,Incheol Cho,Mingu Kang,Jaeseok Jeong,Minho Choi,Kie Young Woo,Kuk‐Jin Yoon,Yong‐Hoon Cho,Inkyu Park
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-12-19
卷期号:17 (1): 539-551
被引量:43
标识
DOI:10.1021/acsnano.2c09314
摘要
As interests in air quality monitoring related to environmental pollution and industrial safety increase, demands for gas sensors are rapidly increasing. Among various gas sensor types, the semiconductor metal oxide (SMO)-type sensor has advantages of high sensitivity, low cost, mass production, and small size but suffers from poor selectivity. To solve this problem, electronic nose (e-nose) systems using a gas sensor array and pattern recognition are widely used. However, as the number of sensors in the e-nose system increases, total power consumption also increases. In this study, an ultra-low-power e-nose system was developed using ultraviolet (UV) micro-LED (μLED) gas sensors and a convolutional neural network (CNN). A monolithic photoactivated gas sensor was developed by depositing a nanocolumnar In2O3 film coated with plasmonic metal nanoparticles (NPs) directly on the μLED. The e-nose system consists of two different μLED sensors with silver and gold NP coating, and the total power consumption was measured as 0.38 mW, which is one-hundredth of the conventional heater-based e-nose system. Responses to various target gases measured by multi-μLED gas sensors were analyzed by pattern recognition and used as the training data for the CNN algorithm. As a result, a real-time, highly selective e-nose system with a gas classification accuracy of 99.32% and a gas concentration regression error (mean absolute) of 13.82% for five different gases (air, ethanol, NO2, acetone, methanol) was developed. The μLED-based e-nose system can be stably battery-driven for a long period and is expected to be widely used in environmental internet of things (IoT) applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI