Ultra-Low-Power E-Nose System Based on Multi-Micro-LED-Integrated, Nanostructured Gas Sensors and Deep Learning

电子鼻 材料科学 传感器阵列 纳米技术 计算机科学 光电子学 机器学习
作者
Kichul Lee,Incheol Cho,Mingu Kang,Jaeseok Jeong,Minho Choi,Kie Young Woo,Kuk‐Jin Yoon,Yong‐Hoon Cho,Inkyu Park
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (1): 539-551 被引量:61
标识
DOI:10.1021/acsnano.2c09314
摘要

As interests in air quality monitoring related to environmental pollution and industrial safety increase, demands for gas sensors are rapidly increasing. Among various gas sensor types, the semiconductor metal oxide (SMO)-type sensor has advantages of high sensitivity, low cost, mass production, and small size but suffers from poor selectivity. To solve this problem, electronic nose (e-nose) systems using a gas sensor array and pattern recognition are widely used. However, as the number of sensors in the e-nose system increases, total power consumption also increases. In this study, an ultra-low-power e-nose system was developed using ultraviolet (UV) micro-LED (μLED) gas sensors and a convolutional neural network (CNN). A monolithic photoactivated gas sensor was developed by depositing a nanocolumnar In2O3 film coated with plasmonic metal nanoparticles (NPs) directly on the μLED. The e-nose system consists of two different μLED sensors with silver and gold NP coating, and the total power consumption was measured as 0.38 mW, which is one-hundredth of the conventional heater-based e-nose system. Responses to various target gases measured by multi-μLED gas sensors were analyzed by pattern recognition and used as the training data for the CNN algorithm. As a result, a real-time, highly selective e-nose system with a gas classification accuracy of 99.32% and a gas concentration regression error (mean absolute) of 13.82% for five different gases (air, ethanol, NO2, acetone, methanol) was developed. The μLED-based e-nose system can be stably battery-driven for a long period and is expected to be widely used in environmental internet of things (IoT) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助yyy采纳,获得10
1秒前
1秒前
茶蛋完成签到 ,获得积分10
1秒前
2秒前
3秒前
Jasper应助alice采纳,获得10
3秒前
ihtw发布了新的文献求助10
5秒前
5秒前
6秒前
chengzi发布了新的文献求助30
7秒前
wcwzcz发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
10秒前
天天快乐应助稳重的小杨采纳,获得10
11秒前
11秒前
11秒前
12秒前
呜呜完成签到,获得积分10
13秒前
younghippo发布了新的文献求助10
13秒前
yh发布了新的文献求助10
14秒前
15秒前
shutong完成签到,获得积分10
15秒前
美夏发布了新的文献求助10
16秒前
顾闭月发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
20秒前
20秒前
yh完成签到,获得积分10
20秒前
21秒前
22秒前
万惜文发布了新的文献求助10
22秒前
汉堡包应助猪变成了蛾子采纳,获得10
22秒前
李健的粉丝团团长应助tyx采纳,获得10
23秒前
22给22的求助进行了留言
23秒前
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089