Ultra-Low-Power E-Nose System Based on Multi-Micro-LED-Integrated, Nanostructured Gas Sensors and Deep Learning

电子鼻 材料科学 传感器阵列 纳米技术 计算机科学 光电子学 机器学习
作者
Kichul Lee,Incheol Cho,Mingu Kang,Jaeseok Jeong,Minho Choi,Kie Young Woo,Kuk‐Jin Yoon,Yong‐Hoon Cho,Inkyu Park
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (1): 539-551 被引量:76
标识
DOI:10.1021/acsnano.2c09314
摘要

As interests in air quality monitoring related to environmental pollution and industrial safety increase, demands for gas sensors are rapidly increasing. Among various gas sensor types, the semiconductor metal oxide (SMO)-type sensor has advantages of high sensitivity, low cost, mass production, and small size but suffers from poor selectivity. To solve this problem, electronic nose (e-nose) systems using a gas sensor array and pattern recognition are widely used. However, as the number of sensors in the e-nose system increases, total power consumption also increases. In this study, an ultra-low-power e-nose system was developed using ultraviolet (UV) micro-LED (μLED) gas sensors and a convolutional neural network (CNN). A monolithic photoactivated gas sensor was developed by depositing a nanocolumnar In2O3 film coated with plasmonic metal nanoparticles (NPs) directly on the μLED. The e-nose system consists of two different μLED sensors with silver and gold NP coating, and the total power consumption was measured as 0.38 mW, which is one-hundredth of the conventional heater-based e-nose system. Responses to various target gases measured by multi-μLED gas sensors were analyzed by pattern recognition and used as the training data for the CNN algorithm. As a result, a real-time, highly selective e-nose system with a gas classification accuracy of 99.32% and a gas concentration regression error (mean absolute) of 13.82% for five different gases (air, ethanol, NO2, acetone, methanol) was developed. The μLED-based e-nose system can be stably battery-driven for a long period and is expected to be widely used in environmental internet of things (IoT) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助科研康采纳,获得10
刚刚
刚刚
seven发布了新的文献求助10
刚刚
刚刚
天天开心发布了新的文献求助10
1秒前
科研通AI5应助爱笑可仁采纳,获得10
1秒前
明亮寒安完成签到 ,获得积分10
1秒前
1秒前
Maestro_S应助xzyin采纳,获得20
2秒前
汐总完成签到,获得积分10
2秒前
3秒前
xiaoge发布了新的文献求助10
3秒前
3秒前
echogj完成签到,获得积分10
3秒前
张皓123发布了新的文献求助10
3秒前
学术蝗虫完成签到,获得积分10
4秒前
4秒前
4秒前
香蕉觅云应助小羊咩咩采纳,获得10
4秒前
6秒前
sunyanghu369完成签到,获得积分10
6秒前
锋feng完成签到 ,获得积分10
6秒前
岚泽完成签到,获得积分10
6秒前
崔凯发布了新的文献求助30
7秒前
顾年发布了新的文献求助10
7秒前
胖高高发布了新的文献求助10
7秒前
free2030发布了新的文献求助10
8秒前
情怀应助qqjssb采纳,获得10
8秒前
sunyanghu369发布了新的文献求助100
8秒前
hhhh发布了新的文献求助10
8秒前
8秒前
张皓123完成签到,获得积分10
8秒前
起风了完成签到,获得积分10
9秒前
星辰大海应助abcc1234采纳,获得10
9秒前
Sui发布了新的文献求助10
9秒前
充电宝应助ayan采纳,获得10
9秒前
发一篇sci发布了新的文献求助10
10秒前
10秒前
完美世界应助徐zhipei采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603379
求助须知:如何正确求助?哪些是违规求助? 4012139
关于积分的说明 12422052
捐赠科研通 3692589
什么是DOI,文献DOI怎么找? 2035723
邀请新用户注册赠送积分活动 1068884
科研通“疑难数据库(出版商)”最低求助积分说明 953371