清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-Objective Evolutionary Optimization of Multi-node Network for Thermal Modelling of Electronic Package

节点(物理) 计算机科学 组分(热力学) 计算 算法 工程类 结构工程 热力学 物理
作者
Monier-Vinard Eric,Najib Laraqi
标识
DOI:10.1109/therminic57263.2022.9950677
摘要

In 1996, the concept of Compact Thermal Model (CTM) was proposed by the European research project referred to as DELPHI. Its objective was to from a set of data, generated by numerical simulations, to create the simplest multi-node thermal model that allows preserving an acceptable accuracy whatever the operating conditions of the inputs. The established model is a black-box object combined to a network of resistors that links a single temperature-sensitive node to major surfaces of heat extraction. This surrogate model is built with the aim of approximating the thermal behavior of an electronic component submitted to a large range of boundary conditions. Over the last two decades, new Reduced Order Model (ROM) methods were studied but at board modeling level, nodal analysis model remains the most practical solution to minimize numerical model size and computation times. However, the agreement of DELPHI's CTM standardized method suffers many limitations such as the choice of appropriate optimization techniques or the definition of training multi-objective criteria. The present work discusses the use of Differential Evolution (DE) algorithms to formulate a robust chromosomes-genes fitting procedure where a relevant multi-node network can be extracted. So, the performances of the Classic-DE algorithm were analyzed on several test cases of an electronic component family, referred to as Quad Flat No-lead package (QFN). Whatever the studied package size, a deduced six-node matrix proves its ability for training data to yield high-accuracy resistance-network models and to perform well for training-independent validation scenarios of boundary conditions. The prediction of the component most sensitive temperature using a very simple black-box model form never exceeds on average 1%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llhsw52关注了科研通微信公众号
6秒前
上官若男应助lan199623采纳,获得10
9秒前
yuntong完成签到 ,获得积分10
14秒前
华仔应助求学采纳,获得10
16秒前
23秒前
lan199623发布了新的文献求助10
27秒前
adovj完成签到 ,获得积分10
29秒前
35秒前
求学发布了新的文献求助10
39秒前
zzhui完成签到,获得积分10
42秒前
lan199623完成签到,获得积分10
57秒前
Mountain完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
可爱沛蓝完成签到 ,获得积分10
1分钟前
情怀应助阿萨卡先生采纳,获得10
1分钟前
大个应助Singularity采纳,获得10
1分钟前
1分钟前
1分钟前
盈盈发布了新的文献求助10
1分钟前
1分钟前
orixero应助阿萨卡先生采纳,获得10
1分钟前
Mountain完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
Lei完成签到,获得积分10
2分钟前
yellowonion完成签到 ,获得积分10
2分钟前
锦城纯契完成签到 ,获得积分10
2分钟前
chcmy完成签到 ,获得积分0
2分钟前
wujiwuhui完成签到 ,获得积分10
2分钟前
盈盈发布了新的文献求助10
3分钟前
xiaozou55完成签到 ,获得积分10
3分钟前
坚定盈发布了新的文献求助10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
cgs完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715229
求助须知:如何正确求助?哪些是违规求助? 5232233
关于积分的说明 15274227
捐赠科研通 4866222
什么是DOI,文献DOI怎么找? 2612791
邀请新用户注册赠送积分活动 1562951
关于科研通互助平台的介绍 1520349