Multi-Objective Evolutionary Optimization of Multi-node Network for Thermal Modelling of Electronic Package

节点(物理) 计算机科学 组分(热力学) 计算 算法 工程类 结构工程 热力学 物理
作者
Monier-Vinard Eric,Najib Laraqi
标识
DOI:10.1109/therminic57263.2022.9950677
摘要

In 1996, the concept of Compact Thermal Model (CTM) was proposed by the European research project referred to as DELPHI. Its objective was to from a set of data, generated by numerical simulations, to create the simplest multi-node thermal model that allows preserving an acceptable accuracy whatever the operating conditions of the inputs. The established model is a black-box object combined to a network of resistors that links a single temperature-sensitive node to major surfaces of heat extraction. This surrogate model is built with the aim of approximating the thermal behavior of an electronic component submitted to a large range of boundary conditions. Over the last two decades, new Reduced Order Model (ROM) methods were studied but at board modeling level, nodal analysis model remains the most practical solution to minimize numerical model size and computation times. However, the agreement of DELPHI's CTM standardized method suffers many limitations such as the choice of appropriate optimization techniques or the definition of training multi-objective criteria. The present work discusses the use of Differential Evolution (DE) algorithms to formulate a robust chromosomes-genes fitting procedure where a relevant multi-node network can be extracted. So, the performances of the Classic-DE algorithm were analyzed on several test cases of an electronic component family, referred to as Quad Flat No-lead package (QFN). Whatever the studied package size, a deduced six-node matrix proves its ability for training data to yield high-accuracy resistance-network models and to perform well for training-independent validation scenarios of boundary conditions. The prediction of the component most sensitive temperature using a very simple black-box model form never exceeds on average 1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
drz发布了新的文献求助10
1秒前
笑点低的不言完成签到,获得积分10
1秒前
圆锥香蕉举报宋晓静求助涉嫌违规
2秒前
Ttttt给Ttttt的求助进行了留言
2秒前
ergatoid完成签到,获得积分10
2秒前
2秒前
山乞凡完成签到 ,获得积分10
3秒前
烟花应助cs采纳,获得10
3秒前
dddd发布了新的文献求助30
4秒前
4秒前
4秒前
4秒前
isaac发布了新的文献求助10
4秒前
大个应助hif1a采纳,获得10
5秒前
笨笨翰发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
苹果追命完成签到,获得积分10
6秒前
一台小钢炮完成签到,获得积分10
6秒前
YI应助安文采纳,获得10
6秒前
wh发布了新的文献求助10
7秒前
英吉利25发布了新的文献求助10
7秒前
7秒前
董晏殊发布了新的文献求助10
8秒前
xx发布了新的文献求助10
8秒前
8秒前
林士完成签到,获得积分10
8秒前
pcy应助可耐的毛衣采纳,获得10
9秒前
爱因斯宣发布了新的文献求助10
9秒前
ghost202关注了科研通微信公众号
9秒前
辛勤饼干发布了新的文献求助10
9秒前
pantio完成签到,获得积分10
9秒前
nzxnzx发布了新的文献求助10
9秒前
小蘑菇应助王小小采纳,获得10
10秒前
Akim应助顺利紫山采纳,获得10
10秒前
10秒前
歡禧发布了新的文献求助10
11秒前
深情安青应助九月采纳,获得10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650