Multi-Objective Evolutionary Optimization of Multi-node Network for Thermal Modelling of Electronic Package

节点(物理) 计算机科学 组分(热力学) 计算 算法 工程类 结构工程 热力学 物理
作者
Monier-Vinard Eric,Najib Laraqi
标识
DOI:10.1109/therminic57263.2022.9950677
摘要

In 1996, the concept of Compact Thermal Model (CTM) was proposed by the European research project referred to as DELPHI. Its objective was to from a set of data, generated by numerical simulations, to create the simplest multi-node thermal model that allows preserving an acceptable accuracy whatever the operating conditions of the inputs. The established model is a black-box object combined to a network of resistors that links a single temperature-sensitive node to major surfaces of heat extraction. This surrogate model is built with the aim of approximating the thermal behavior of an electronic component submitted to a large range of boundary conditions. Over the last two decades, new Reduced Order Model (ROM) methods were studied but at board modeling level, nodal analysis model remains the most practical solution to minimize numerical model size and computation times. However, the agreement of DELPHI's CTM standardized method suffers many limitations such as the choice of appropriate optimization techniques or the definition of training multi-objective criteria. The present work discusses the use of Differential Evolution (DE) algorithms to formulate a robust chromosomes-genes fitting procedure where a relevant multi-node network can be extracted. So, the performances of the Classic-DE algorithm were analyzed on several test cases of an electronic component family, referred to as Quad Flat No-lead package (QFN). Whatever the studied package size, a deduced six-node matrix proves its ability for training data to yield high-accuracy resistance-network models and to perform well for training-independent validation scenarios of boundary conditions. The prediction of the component most sensitive temperature using a very simple black-box model form never exceeds on average 1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲海完成签到,获得积分10
1秒前
文静新烟发布了新的文献求助10
2秒前
深情安青应助v321采纳,获得10
2秒前
ly发布了新的文献求助10
2秒前
2秒前
bwod发布了新的文献求助10
3秒前
Lsmile发布了新的文献求助10
3秒前
赘婿应助peng采纳,获得10
3秒前
FaiRe发布了新的文献求助10
3秒前
3秒前
徐枘完成签到,获得积分10
4秒前
LD发布了新的文献求助10
4秒前
4秒前
SciGPT应助下次见采纳,获得10
4秒前
Gzh_NJ完成签到,获得积分10
4秒前
ll完成签到,获得积分10
4秒前
wenwen完成签到,获得积分10
5秒前
小6发布了新的文献求助30
5秒前
Beverly发布了新的文献求助10
5秒前
老神在在完成签到,获得积分10
6秒前
7秒前
7秒前
飘逸之玉完成签到,获得积分10
8秒前
8秒前
8秒前
Liz完成签到,获得积分10
9秒前
chenlei完成签到,获得积分10
9秒前
徐枘发布了新的文献求助10
9秒前
9秒前
bjy完成签到 ,获得积分10
9秒前
慕青应助彪壮的元柏采纳,获得10
9秒前
科研乞丐应助柚子采纳,获得20
9秒前
hongliyu98完成签到,获得积分10
10秒前
11秒前
11秒前
大模型应助谨慎初曼采纳,获得10
11秒前
老神在在发布了新的文献求助10
11秒前
11秒前
CipherSage应助醉熏的海亦采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352387
求助须知:如何正确求助?哪些是违规求助? 4485204
关于积分的说明 13962313
捐赠科研通 4385188
什么是DOI,文献DOI怎么找? 2409321
邀请新用户注册赠送积分活动 1401751
关于科研通互助平台的介绍 1375322