Multi-Objective Evolutionary Optimization of Multi-node Network for Thermal Modelling of Electronic Package

节点(物理) 计算机科学 组分(热力学) 计算 算法 工程类 结构工程 热力学 物理
作者
Monier-Vinard Eric,Najib Laraqi
标识
DOI:10.1109/therminic57263.2022.9950677
摘要

In 1996, the concept of Compact Thermal Model (CTM) was proposed by the European research project referred to as DELPHI. Its objective was to from a set of data, generated by numerical simulations, to create the simplest multi-node thermal model that allows preserving an acceptable accuracy whatever the operating conditions of the inputs. The established model is a black-box object combined to a network of resistors that links a single temperature-sensitive node to major surfaces of heat extraction. This surrogate model is built with the aim of approximating the thermal behavior of an electronic component submitted to a large range of boundary conditions. Over the last two decades, new Reduced Order Model (ROM) methods were studied but at board modeling level, nodal analysis model remains the most practical solution to minimize numerical model size and computation times. However, the agreement of DELPHI's CTM standardized method suffers many limitations such as the choice of appropriate optimization techniques or the definition of training multi-objective criteria. The present work discusses the use of Differential Evolution (DE) algorithms to formulate a robust chromosomes-genes fitting procedure where a relevant multi-node network can be extracted. So, the performances of the Classic-DE algorithm were analyzed on several test cases of an electronic component family, referred to as Quad Flat No-lead package (QFN). Whatever the studied package size, a deduced six-node matrix proves its ability for training data to yield high-accuracy resistance-network models and to perform well for training-independent validation scenarios of boundary conditions. The prediction of the component most sensitive temperature using a very simple black-box model form never exceeds on average 1%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助Jian采纳,获得10
刚刚
卢秋宇完成签到,获得积分20
1秒前
叶子完成签到,获得积分10
1秒前
瞿琼瑶发布了新的文献求助80
2秒前
2秒前
苦苦发布了新的文献求助10
2秒前
2秒前
3秒前
华仔应助多情以山采纳,获得10
3秒前
奔跑西木发布了新的文献求助10
3秒前
3秒前
雨天有伞完成签到,获得积分10
4秒前
ZOLEI完成签到,获得积分10
4秒前
5秒前
超级万声发布了新的文献求助30
5秒前
执着蓝发布了新的文献求助10
5秒前
迷路巧曼完成签到,获得积分20
6秒前
害羞鬼发布了新的文献求助10
7秒前
7秒前
Giannis完成签到,获得积分20
8秒前
超级翠完成签到,获得积分10
8秒前
hzl发布了新的文献求助10
8秒前
8秒前
Aprilapple发布了新的文献求助10
8秒前
嘎嘎发布了新的文献求助20
9秒前
Echo_枕星完成签到 ,获得积分10
9秒前
直率路人完成签到,获得积分10
9秒前
9秒前
10秒前
王宽宽宽发布了新的文献求助10
10秒前
ko1完成签到 ,获得积分10
10秒前
西西发布了新的文献求助10
10秒前
奶油果泥完成签到,获得积分10
11秒前
Akim应助苦苦采纳,获得10
11秒前
科研通AI6应助瞿琼瑶采纳,获得10
11秒前
毛果完成签到,获得积分10
12秒前
一点发布了新的文献求助20
12秒前
keyanrubbish发布了新的文献求助10
12秒前
天晴完成签到,获得积分10
12秒前
buno应助酷波zai采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836