Multi-Objective Evolutionary Optimization of Multi-node Network for Thermal Modelling of Electronic Package

节点(物理) 计算机科学 组分(热力学) 计算 算法 工程类 结构工程 热力学 物理
作者
Monier-Vinard Eric,Najib Laraqi
标识
DOI:10.1109/therminic57263.2022.9950677
摘要

In 1996, the concept of Compact Thermal Model (CTM) was proposed by the European research project referred to as DELPHI. Its objective was to from a set of data, generated by numerical simulations, to create the simplest multi-node thermal model that allows preserving an acceptable accuracy whatever the operating conditions of the inputs. The established model is a black-box object combined to a network of resistors that links a single temperature-sensitive node to major surfaces of heat extraction. This surrogate model is built with the aim of approximating the thermal behavior of an electronic component submitted to a large range of boundary conditions. Over the last two decades, new Reduced Order Model (ROM) methods were studied but at board modeling level, nodal analysis model remains the most practical solution to minimize numerical model size and computation times. However, the agreement of DELPHI's CTM standardized method suffers many limitations such as the choice of appropriate optimization techniques or the definition of training multi-objective criteria. The present work discusses the use of Differential Evolution (DE) algorithms to formulate a robust chromosomes-genes fitting procedure where a relevant multi-node network can be extracted. So, the performances of the Classic-DE algorithm were analyzed on several test cases of an electronic component family, referred to as Quad Flat No-lead package (QFN). Whatever the studied package size, a deduced six-node matrix proves its ability for training data to yield high-accuracy resistance-network models and to perform well for training-independent validation scenarios of boundary conditions. The prediction of the component most sensitive temperature using a very simple black-box model form never exceeds on average 1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FYJY发布了新的文献求助10
刚刚
许敬翎发布了新的文献求助10
1秒前
郭晓萌完成签到,获得积分10
1秒前
丘比特应助blackyu采纳,获得10
2秒前
科研通AI6应助liang2508采纳,获得10
4秒前
4秒前
叶先生完成签到 ,获得积分10
4秒前
5秒前
6秒前
郭晓萌发布了新的文献求助10
7秒前
8秒前
9秒前
机灵的衬衫完成签到 ,获得积分10
9秒前
123完成签到,获得积分10
9秒前
science发布了新的文献求助10
9秒前
木偶人发布了新的文献求助10
12秒前
小杭76应助年轻迪奥采纳,获得10
12秒前
李爱国应助wulala采纳,获得10
14秒前
仁济泌外发布了新的文献求助10
14秒前
星辰大海应助Brilliant采纳,获得10
14秒前
许敬翎完成签到,获得积分10
15秒前
CHEN发布了新的文献求助10
15秒前
木偶人完成签到,获得积分10
16秒前
专一的平卉完成签到,获得积分10
17秒前
NexusExplorer应助Juni采纳,获得10
17秒前
非我发布了新的文献求助10
17秒前
如意的冰双完成签到 ,获得积分10
17秒前
科研通AI6应助狂野的鸭子采纳,获得10
18秒前
lyk2815发布了新的文献求助10
19秒前
共享精神应助0805zz采纳,获得10
20秒前
珊珊完成签到,获得积分10
21秒前
科研通AI6应助liang2508采纳,获得10
21秒前
yyyyy完成签到,获得积分10
23秒前
Swj关注了科研通微信公众号
23秒前
23秒前
25秒前
25秒前
YZ发布了新的文献求助10
26秒前
27秒前
28秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382258
求助须知:如何正确求助?哪些是违规求助? 4505455
关于积分的说明 14021836
捐赠科研通 4414879
什么是DOI,文献DOI怎么找? 2425203
邀请新用户注册赠送积分活动 1418008
关于科研通互助平台的介绍 1395964