亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Objective Evolutionary Optimization of Multi-node Network for Thermal Modelling of Electronic Package

节点(物理) 计算机科学 组分(热力学) 计算 算法 工程类 结构工程 热力学 物理
作者
Monier-Vinard Eric,Najib Laraqi
标识
DOI:10.1109/therminic57263.2022.9950677
摘要

In 1996, the concept of Compact Thermal Model (CTM) was proposed by the European research project referred to as DELPHI. Its objective was to from a set of data, generated by numerical simulations, to create the simplest multi-node thermal model that allows preserving an acceptable accuracy whatever the operating conditions of the inputs. The established model is a black-box object combined to a network of resistors that links a single temperature-sensitive node to major surfaces of heat extraction. This surrogate model is built with the aim of approximating the thermal behavior of an electronic component submitted to a large range of boundary conditions. Over the last two decades, new Reduced Order Model (ROM) methods were studied but at board modeling level, nodal analysis model remains the most practical solution to minimize numerical model size and computation times. However, the agreement of DELPHI's CTM standardized method suffers many limitations such as the choice of appropriate optimization techniques or the definition of training multi-objective criteria. The present work discusses the use of Differential Evolution (DE) algorithms to formulate a robust chromosomes-genes fitting procedure where a relevant multi-node network can be extracted. So, the performances of the Classic-DE algorithm were analyzed on several test cases of an electronic component family, referred to as Quad Flat No-lead package (QFN). Whatever the studied package size, a deduced six-node matrix proves its ability for training data to yield high-accuracy resistance-network models and to perform well for training-independent validation scenarios of boundary conditions. The prediction of the component most sensitive temperature using a very simple black-box model form never exceeds on average 1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
UpLiu完成签到 ,获得积分10
4秒前
9秒前
18秒前
Jasper应助维颖采纳,获得10
21秒前
小花小宝和阿飞完成签到 ,获得积分10
26秒前
吴端完成签到,获得积分10
27秒前
贪玩老姆完成签到 ,获得积分10
32秒前
tj完成签到 ,获得积分10
37秒前
40秒前
阳佟水蓉完成签到,获得积分10
44秒前
46秒前
所所应助zhvjdb采纳,获得10
47秒前
48秒前
1分钟前
1分钟前
维颖发布了新的文献求助10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
浮浮世世发布了新的文献求助10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
Cast_Lappland发布了新的文献求助10
1分钟前
1分钟前
Cast_Lappland完成签到,获得积分10
1分钟前
早川完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
2分钟前
可爱的函函应助早川采纳,获得10
2分钟前
馍夹菜完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Vivian发布了新的文献求助30
2分钟前
Fox完成签到,获得积分10
2分钟前
科研通AI2S应助魏欣娜采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430