Multi-Objective Evolutionary Optimization of Multi-node Network for Thermal Modelling of Electronic Package

节点(物理) 计算机科学 组分(热力学) 计算 算法 工程类 结构工程 热力学 物理
作者
Monier-Vinard Eric,Najib Laraqi
标识
DOI:10.1109/therminic57263.2022.9950677
摘要

In 1996, the concept of Compact Thermal Model (CTM) was proposed by the European research project referred to as DELPHI. Its objective was to from a set of data, generated by numerical simulations, to create the simplest multi-node thermal model that allows preserving an acceptable accuracy whatever the operating conditions of the inputs. The established model is a black-box object combined to a network of resistors that links a single temperature-sensitive node to major surfaces of heat extraction. This surrogate model is built with the aim of approximating the thermal behavior of an electronic component submitted to a large range of boundary conditions. Over the last two decades, new Reduced Order Model (ROM) methods were studied but at board modeling level, nodal analysis model remains the most practical solution to minimize numerical model size and computation times. However, the agreement of DELPHI's CTM standardized method suffers many limitations such as the choice of appropriate optimization techniques or the definition of training multi-objective criteria. The present work discusses the use of Differential Evolution (DE) algorithms to formulate a robust chromosomes-genes fitting procedure where a relevant multi-node network can be extracted. So, the performances of the Classic-DE algorithm were analyzed on several test cases of an electronic component family, referred to as Quad Flat No-lead package (QFN). Whatever the studied package size, a deduced six-node matrix proves its ability for training data to yield high-accuracy resistance-network models and to perform well for training-independent validation scenarios of boundary conditions. The prediction of the component most sensitive temperature using a very simple black-box model form never exceeds on average 1%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助李秉烛采纳,获得10
3秒前
平淡的懿轩完成签到,获得积分10
3秒前
3秒前
yu完成签到,获得积分10
3秒前
Gabriel发布了新的文献求助10
3秒前
夏晴晴完成签到,获得积分10
5秒前
wrf发布了新的文献求助10
5秒前
5秒前
华仔应助优美的丹烟采纳,获得10
6秒前
6秒前
fengge完成签到,获得积分10
6秒前
我是老大应助初七123采纳,获得10
7秒前
陈陈发布了新的文献求助10
7秒前
ZSS_ism完成签到,获得积分10
8秒前
tyx完成签到,获得积分10
9秒前
跑快点发布了新的文献求助10
9秒前
9秒前
10秒前
土人完成签到,获得积分10
12秒前
caijie发布了新的文献求助10
12秒前
13秒前
李健应助陈陈采纳,获得10
13秒前
降临完成签到,获得积分20
13秒前
cwwqt完成签到,获得积分10
13秒前
年轻豪英发布了新的文献求助10
13秒前
Cindy完成签到,获得积分20
15秒前
小情绪发布了新的文献求助10
16秒前
aa发布了新的文献求助10
16秒前
风趣笑蓝完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
17秒前
17秒前
隐形曼青应助fengge采纳,获得10
18秒前
残剑月应助Tree_QD采纳,获得10
18秒前
Gabriel完成签到,获得积分20
19秒前
彭于晏应助星之采纳,获得10
19秒前
zhangzhang完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601299
求助须知:如何正确求助?哪些是违规求助? 4686815
关于积分的说明 14846229
捐赠科研通 4680459
什么是DOI,文献DOI怎么找? 2539291
邀请新用户注册赠送积分活动 1506167
关于科研通互助平台的介绍 1471283