清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DGCddG: Deep Graph Convolution for Predicting Protein-Protein Binding Affinity Changes Upon Mutations

图形 计算机科学 卷积(计算机科学) 计算生物学 突变 感知器 代表(政治) 点突变 深度学习 人工智能 生物 生物化学 理论计算机科学 人工神经网络 基因 政治 法学 政治学
作者
Yelu Jiang,Lijun Quan,Kailong Li,Yan Li,Yiting Zhou,Tingfang Wu,Qiang Lyu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 2089-2100 被引量:7
标识
DOI:10.1109/tcbb.2022.3233627
摘要

Effectively and accurately predicting the effects of interactions between proteins after amino acid mutations is a key issue for understanding the mechanism of protein function and drug design. In this study, we present a deep graph convolution (DGC) network-based framework, DGCddG, to predict the changes of protein-protein binding affinity after mutation. DGCddG incorporates multi-layer graph convolution to extract a deep, contextualized representation for each residue of the protein complex structure. The mined channels of the mutation sites by DGC is then fitted to the binding affinity with a multi-layer perceptron. Experiments with results on multiple datasets show that our model can achieve relatively good performance for both single and multi-point mutations. For blind tests on datasets related to angiotensin-converting enzyme 2 binding with the SARS-CoV-2 virus, our method shows better results in predicting ACE2 changes, may help in finding favorable antibodies. Code and data availability: https://github.com/lennylv/DGCddG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
拼搏问薇完成签到 ,获得积分10
13秒前
14秒前
21秒前
36秒前
supermaltose完成签到,获得积分10
41秒前
41秒前
yyds完成签到,获得积分0
41秒前
53秒前
56秒前
科研狗的春天完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
輕瘋发布了新的文献求助10
1分钟前
輕瘋完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
葛力完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ZTiamT发布了新的文献求助200
2分钟前
2分钟前
3分钟前
3分钟前
ZTiamT发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
FashionBoy应助忧郁菲鹰采纳,获得30
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732432
求助须知:如何正确求助?哪些是违规求助? 5339270
关于积分的说明 15322228
捐赠科研通 4878002
什么是DOI,文献DOI怎么找? 2620807
邀请新用户注册赠送积分活动 1570003
关于科研通互助平台的介绍 1526689