Engineering a universal and efficient platform for terpenoid synthesis in yeast

萜类 代谢工程 法尼基二磷酸合酶 酵母 酿酒酵母 生物合成 甲戊酸途径 生物化学 萜烯 合成生物学 单萜 甲戊酸 化学 生物 计算生物学
作者
Yongshuo Ma,Yuexuan Zu,Sanwen Huang,Gregory Stephanopoulos
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (1) 被引量:41
标识
DOI:10.1073/pnas.2207680120
摘要

Engineering microbes for the production of valuable natural products is often hindered by the regulation of native competing metabolic networks in host. This is particularly evident in the case of terpenoid synthesis in yeast, where the canonical terpenoid precursors are tightly coupled to the biosynthesis of sterols essential for yeast viability. One way to circumvent this limitation is by engineering product pathways less connected to the host native metabolism. Here, we introduce a two-step isopentenol utilization pathway (IUP) in Saccharomyces cerevisiae to augment the native mevalonate pathway by providing a shortcut to the synthesis of the common terpenoid precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). As such, the IUP was capable of elevating the IPP/DMAPP pool by 147-fold compared with the native pathway. We further demonstrate that cofeeding isoprenol and prenol enhances geranyl diphosphate (GPP) content for monoterpene biosynthesis. More importantly, we established a synthetic three-step route for efficient synthesis of di-and tetraterpene precursor geranylgeranyl diphosphate (GGPP), circumventing the competition with farnesyl diphosphate (FPP) for sterol biosynthesis and elevating the GGPP level by 374-fold. We combine these IUP-supported precursor-forming platforms with downstream terpene synthases to harness their potential and improve the production of industrially relevant terpenoids by several fold. Our exploration provides a universal and effective platform for supporting terpenoid synthesis in yeast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
非常可爱发布了新的文献求助20
刚刚
eee发布了新的文献求助10
刚刚
幸福胡萝卜完成签到,获得积分10
刚刚
1秒前
科研通AI5应助琅琊为刃采纳,获得10
1秒前
1秒前
1秒前
1秒前
寒冷的奇异果完成签到,获得积分10
2秒前
hziyu发布了新的文献求助10
3秒前
3秒前
野性的南蕾完成签到,获得积分10
3秒前
毛毛哦啊发布了新的文献求助10
3秒前
zzzzzk发布了新的文献求助10
3秒前
3秒前
lalala发布了新的文献求助10
4秒前
三里墩头应助oldlee采纳,获得20
4秒前
4秒前
iNk应助西安小小朱采纳,获得10
4秒前
CodeCraft应助西安小小朱采纳,获得10
4秒前
无花果应助爱学习的小迟采纳,获得10
5秒前
哭泣的映寒完成签到 ,获得积分10
5秒前
xls完成签到,获得积分10
5秒前
5秒前
故意的傲玉应助圈圈采纳,获得10
5秒前
6秒前
522完成签到,获得积分10
6秒前
6秒前
kbj发布了新的文献求助10
6秒前
7秒前
老西瓜发布了新的文献求助10
7秒前
人各有痣完成签到,获得积分10
7秒前
后知后觉发布了新的文献求助10
7秒前
xiaoxiao发布了新的文献求助30
7秒前
7秒前
8秒前
8秒前
英姑应助哈哈呀采纳,获得10
9秒前
9秒前
hurry完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672