已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Origin and Regulation of Self‐Discharge in MXene Supercapacitors

MXenes公司 超级电容器 材料科学 电解质 自放电 储能 工作职能 纳米技术 光电子学 化学工程 图层(电子) 电容 电极 物理化学 功率(物理) 热力学 物理 化学 工程类
作者
Shi Pu,Zixing Wang,Yanting Xie,Jintao Fan,Zhong Xu,Yihan Wang,Hanyu He,Xiong Zhang,Weiqing Yang,Haitao Zhang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (8) 被引量:71
标识
DOI:10.1002/adfm.202208715
摘要

Abstract MXene‐based supercapacitors are promising electrochemical energy‐storage devices due to their ultrahigh volumetric capacitance, high‐power characteristics, and excellent cyclability. However, they suffer from severe self‐discharging behavior while the underlying self‐discharging mechanism is still unclear. Here, the self‐discharge behavior of MXene‐based supercapacitors from surface electronic structure of MXenes is disclosed, and a novel method to mitigate it is proposed. A superficial engineering strategy based on bio‐thermal treatment is developed to effectively tailor surface electronic structure of Ti 3 C 2 T x MXenes by eliminating hydroxyl terminations. With the evolution of surface electronic structure, as revealed by Kelvin probe force microscope and synchrotron radiation X‐ray absorption fine structure analysis, MXene‐based supercapacitors with common aqueous electrolytes show >20% decline in self‐discharge rate. This decline mechanism originates from the increased work function that induces higher zero‐charge potential after the removal of hydroxyl groups in MXenes. Meanwhile, the strengthened surface dipole leads to higher surface free energy between MXene and electrolytes. These two positive effects endow MXenes with weaker self‐discharge kinetics. Specifically, the activation‐controlled self‐discharge process is greatly suppressed. Illuminating the relevance between electronic structure and self‐discharge accompanying superficial engineering suppression strategy can guide to development of high‐performance energy storage devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮的山水完成签到 ,获得积分10
1秒前
fg发布了新的文献求助10
1秒前
顺心醉蝶完成签到,获得积分10
3秒前
大模型应助苗条的小蜜蜂采纳,获得10
5秒前
阿紫吖完成签到 ,获得积分10
12秒前
xiaojcom应助xiubo128采纳,获得30
12秒前
19秒前
Dong完成签到 ,获得积分10
21秒前
YY完成签到 ,获得积分10
22秒前
23秒前
kai完成签到 ,获得积分10
23秒前
科研通AI2S应助Cccc小懒采纳,获得10
24秒前
赘婿应助buhui采纳,获得10
28秒前
酷波er应助Yunus采纳,获得10
30秒前
31秒前
俏皮猫咪发布了新的文献求助10
31秒前
烟花应助laz采纳,获得10
38秒前
Lucas应助堀江真夏采纳,获得30
40秒前
苏青舟完成签到 ,获得积分10
40秒前
光之美少女完成签到 ,获得积分10
41秒前
动听的冰海完成签到 ,获得积分10
41秒前
43秒前
英姑应助尹姝采纳,获得10
43秒前
七月完成签到,获得积分10
44秒前
敖启航发布了新的文献求助30
49秒前
花生完成签到 ,获得积分10
50秒前
52秒前
54秒前
桐桐应助蜗牛采纳,获得10
55秒前
杨然完成签到 ,获得积分10
55秒前
文天发布了新的文献求助10
56秒前
56秒前
Limpidly应助真实的哲瀚采纳,获得10
59秒前
59秒前
1分钟前
1分钟前
海阔天空发布了新的文献求助10
1分钟前
夏紊完成签到 ,获得积分10
1分钟前
堀江真夏发布了新的文献求助30
1分钟前
shirely发布了新的文献求助10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162031
求助须知:如何正确求助?哪些是违规求助? 2813164
关于积分的说明 7898852
捐赠科研通 2472153
什么是DOI,文献DOI怎么找? 1316366
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129