亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards Making Systems Forget with Machine Unlearning

计算机科学 遗忘 过程(计算) 机器学习 系统调用 人工智能 透视图(图形) 集合(抽象数据类型) 差别隐私 人机交互 数据挖掘 语言学 操作系统 哲学 程序设计语言
作者
Yinzhi Cao,Junfeng Yang
出处
期刊:IEEE Symposium on Security and Privacy 卷期号:: 463-480 被引量:295
标识
DOI:10.1109/sp.2015.35
摘要

Today's systems produce a rapidly exploding amount of data, and the data further derives more data, forming a complex data propagation network that we call the data's lineage. There are many reasons that users want systems to forget certain data including its lineage. From a privacy perspective, users who become concerned with new privacy risks of a system often want the system to forget their data and lineage. From a security perspective, if an attacker pollutes an anomaly detector by injecting manually crafted data into the training data set, the detector must forget the injected data to regain security. From a usability perspective, a user can remove noise and incorrect entries so that a recommendation engine gives useful recommendations. Therefore, we envision forgetting systems, capable of forgetting certain data and their lineages, completely and quickly. This paper focuses on making learning systems forget, the process of which we call machine unlearning, or simply unlearning. We present a general, efficient unlearning approach by transforming learning algorithms used by a system into a summation form. To forget a training data sample, our approach simply updates a small number of summations -- asymptotically faster than retraining from scratch. Our approach is general, because the summation form is from the statistical query learning in which many machine learning algorithms can be implemented. Our approach also applies to all stages of machine learning, including feature selection and modeling. Our evaluation, on four diverse learning systems and real-world workloads, shows that our approach is general, effective, fast, and easy to use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
见刊发布了新的文献求助10
15秒前
15秒前
19秒前
19秒前
zmx发布了新的文献求助10
24秒前
王榕发布了新的文献求助10
25秒前
哇呀呀完成签到 ,获得积分10
27秒前
baolong完成签到,获得积分10
27秒前
桐桐应助见刊采纳,获得10
27秒前
糊涂的麦片完成签到,获得积分10
29秒前
mangle完成签到,获得积分10
30秒前
38秒前
pluto应助科研通管家采纳,获得10
41秒前
隐形曼青应助ccw采纳,获得10
45秒前
liudy完成签到,获得积分10
48秒前
50秒前
52秒前
53秒前
脑洞疼应助Rashalin采纳,获得10
55秒前
ccw发布了新的文献求助10
57秒前
CodeCraft应助aliu采纳,获得10
1分钟前
ccw完成签到,获得积分10
1分钟前
汪汪队立大功完成签到,获得积分10
1分钟前
科研通AI5应助赖胖胖采纳,获得30
1分钟前
1分钟前
liudy发布了新的文献求助10
1分钟前
aliu发布了新的文献求助10
1分钟前
小星星完成签到,获得积分10
1分钟前
1分钟前
王榕完成签到 ,获得积分10
1分钟前
张小仙发布了新的文献求助10
1分钟前
1分钟前
陌鸢发布了新的文献求助10
1分钟前
1分钟前
刘刘完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI5应助HJJHJH采纳,获得30
1分钟前
Hello应助HJJHJH采纳,获得10
1分钟前
活泼酸奶完成签到,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590619
求助须知:如何正确求助?哪些是违规求助? 3158980
关于积分的说明 9521865
捐赠科研通 2861917
什么是DOI,文献DOI怎么找? 1572870
邀请新用户注册赠送积分活动 738262
科研通“疑难数据库(出版商)”最低求助积分说明 722722