已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Supervised Hashing for Image Retrieval via Image Representation Learning

计算机科学 动态完美哈希 人工智能 图像检索 散列函数 模式识别(心理学) 哈希表 特征哈希 图像(数学) 通用哈希 特征(语言学) 双重哈希 哲学 计算机安全 语言学
作者
Rongkai Xia,Yan Pan,Hanjiang Lai,Cong Liu,Shuicheng Yan
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:28 (1) 被引量:915
标识
DOI:10.1609/aaai.v28i1.8952
摘要

Hashing is a popular approximate nearest neighbor search approach for large-scale image retrieval. Supervised hashing, which incorporates similarity/dissimilarity information on entity pairs to improve the quality of hashing function learning, has recently received increasing attention. However, in the existing supervised hashing methods for images, an input image is usually encoded by a vector of hand-crafted visual features. Such hand-crafted feature vectors do not necessarily preserve the accurate semantic similarities of images pairs, which may often degrade the performance of hashing function learning. In this paper, we propose a supervised hashing method for image retrieval, in which we automatically learn a good image representation tailored to hashing as well as a set of hash functions. The proposed method has two stages. In the first stage, given the pairwise similarity matrix $S$ over training images, we propose a scalable coordinate descent method to decompose $S$ into a product of $HH^T$ where $H$ is a matrix with each of its rows being the approximate hash code associated to a training image. In the second stage, we propose to simultaneously learn a good feature representation for the input images as well as a set of hash functions, via a deep convolutional network tailored to the learned hash codes in $H$ and optionally the discrete class labels of the images. Extensive empirical evaluations on three benchmark datasets with different kinds of images show that the proposed method has superior performance gains over several state-of-the-art supervised and unsupervised hashing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随遇而安应助俞无声采纳,获得50
1秒前
1秒前
英俊的铭应助半眠日记采纳,获得10
4秒前
7秒前
7秒前
科研通AI5应助shuqin采纳,获得10
8秒前
f冯完成签到,获得积分20
9秒前
12秒前
丁三问发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
14秒前
minyan完成签到,获得积分10
15秒前
文艺鞋垫发布了新的文献求助20
17秒前
17秒前
东东亮发布了新的文献求助10
18秒前
f冯发布了新的文献求助10
18秒前
rpe完成签到,获得积分10
18秒前
shuqin发布了新的文献求助10
19秒前
20秒前
领导范儿应助刻苦海露采纳,获得30
21秒前
白云朵儿发布了新的文献求助10
21秒前
神内打工人完成签到 ,获得积分10
23秒前
Jyy77完成签到 ,获得积分10
24秒前
ding应助asdffgg814采纳,获得10
25秒前
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
领导范儿应助科研通管家采纳,获得10
29秒前
nenoaowu应助科研通管家采纳,获得30
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
bc应助科研通管家采纳,获得30
29秒前
bc应助科研通管家采纳,获得30
29秒前
wangrblzu应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
29秒前
zho应助东东亮采纳,获得10
30秒前
shuqin完成签到,获得积分10
31秒前
aganer发布了新的文献求助30
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775841
求助须知:如何正确求助?哪些是违规求助? 3321460
关于积分的说明 10205635
捐赠科研通 3036506
什么是DOI,文献DOI怎么找? 1666212
邀请新用户注册赠送积分活动 797312
科研通“疑难数据库(出版商)”最低求助积分说明 757794