Using simple environmental variables to estimate below‐ground productivity in grasslands

生物量(生态学) 生产力 初级生产 草原 环境科学 温带气候 生态学 大气科学 生态系统 生物 地质学 宏观经济学 经济
作者
Richard Gill,R. Kelly,William J. Parton,Ken Day,Robert B. Jackson,J. A. Morgan,J. M. O. Scurlock,Larry L. Tieszen,Jane Castle,Dennis S. Ojima,Xi Zhang
出处
期刊:Global Ecology and Biogeography [Wiley]
卷期号:11 (1): 79-86 被引量:154
标识
DOI:10.1046/j.1466-822x.2001.00267.x
摘要

Abstract In many temperate and annual grasslands, above‐ground net primary productivity (NPP) can be estimated by measuring peak above‐ground biomass. Estimates of below‐ground net primary productivity and, consequently, total net primary productivity, are more difficult. We addressed one of the three main objectives of the Global Primary Productivity Data Initiative for grassland systems to develop simple models or algorithms to estimate missing components of total system NPP. Any estimate of below‐ground NPP (BNPP) requires an accounting of total root biomass, the percentage of living biomass and annual turnover of live roots. We derived a relationship using above‐ground peak biomass and mean annual temperature as predictors of below‐ground biomass ( r 2 = 0.54; P = 0.01). The percentage of live material was 0.6, based on published values. We used three different functions to describe root turnover: constant, a direct function of above‐ground biomass, or as a positive exponential relationship with mean annual temperature. We tested the various models against a large database of global grassland NPP and the constant turnover and direct function models were approximately equally descriptive ( r 2 = 0.31 and 0.37), while the exponential function had a stronger correlation with the measured values ( r 2 = 0.40) and had a better fit than the other two models at the productive end of the BNPP gradient. When applied to extensive data we assembled from two grassland sites with reliable estimates of total NPP, the direct function was most effective, especially at lower productivity sites. We provide some caveats for its use in systems that lie at the extremes of the grassland gradient and stress that there are large uncertainties associated with measured and modelled estimates of BNPP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布枕头完成签到 ,获得积分10
刚刚
彭燕来完成签到,获得积分10
1秒前
hua完成签到,获得积分10
1秒前
幽默盼柳完成签到 ,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
英姑应助jjdeng采纳,获得10
3秒前
3秒前
4秒前
Zzz完成签到,获得积分10
6秒前
wu完成签到,获得积分10
6秒前
gaoqg完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
可耐的寒松完成签到,获得积分10
7秒前
7秒前
Wuuuu完成签到 ,获得积分10
8秒前
roking完成签到,获得积分10
8秒前
拉不不发布了新的文献求助10
8秒前
9秒前
CodeCraft应助小泉采纳,获得10
9秒前
羽安完成签到,获得积分10
9秒前
宇文天思完成签到,获得积分10
9秒前
欧阳发布了新的文献求助39
9秒前
asdf完成签到,获得积分10
9秒前
刘亮亮完成签到,获得积分10
9秒前
aki空中飞跃完成签到,获得积分10
10秒前
paleo-地质完成签到,获得积分10
11秒前
12秒前
空城完成签到,获得积分10
12秒前
zzc完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
朴素难敌完成签到,获得积分10
13秒前
文献包完成签到,获得积分10
13秒前
14秒前
楠810217完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773550
求助须知:如何正确求助?哪些是违规求助? 5612386
关于积分的说明 15431598
捐赠科研通 4906002
什么是DOI,文献DOI怎么找? 2640012
邀请新用户注册赠送积分活动 1587860
关于科研通互助平台的介绍 1542922