Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex

德纳姆 全基因组关联研究 精神分裂症(面向对象编程) 表观遗传学 前额叶皮质 DNA甲基化 遗传关联 神经科学 数量性状位点 生物 心理学 遗传学 基因型 精神科 单核苷酸多态性 基因 认知 基因表达
作者
Andrew E. Jaffe,Yuan Gao,Amy Deep‐Soboslay,Ran Tao,Thomas M. Hyde,Daniel R. Weinberger,Joel E. Kleinman
出处
期刊:Nature Neuroscience [Springer Nature]
卷期号:19 (1): 40-47 被引量:468
标识
DOI:10.1038/nn.4181
摘要

DNA methylation in human brain shows dramatic variation across development. Genetic loci implicated in risk for schizophrenia are enriched for epigenetic states that show changes from the transition from prenatal to postnatal life. These findings suggest that early development is involved in both genetic and environmental risk factors for schizophrenia. DNA methylation (DNAm) is important in brain development and is potentially important in schizophrenia. We characterized DNAm in prefrontal cortex from 335 non-psychiatric controls across the lifespan and 191 patients with schizophrenia and identified widespread changes in the transition from prenatal to postnatal life. These DNAm changes manifest in the transcriptome, correlate strongly with a shifting cellular landscape and overlap regions of genetic risk for schizophrenia. A quarter of published genome-wide association studies (GWAS)-suggestive loci (4,208 of 15,930, P < 10−100) manifest as significant methylation quantitative trait loci (meQTLs), including 59.6% of GWAS-positive schizophrenia loci. We identified 2,104 CpGs that differ between schizophrenia patients and controls that were enriched for genes related to development and neurodifferentiation. The schizophrenia-associated CpGs strongly correlate with changes related to the prenatal-postnatal transition and show slight enrichment for GWAS risk loci while not corresponding to CpGs differentiating adolescence from later adult life. These data implicate an epigenetic component to the developmental origins of this disorder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
马静雨完成签到,获得积分20
1秒前
2秒前
2秒前
快乐小白菜应助shenzhou9采纳,获得10
2秒前
无花果应助aertom采纳,获得10
2秒前
小田发布了新的文献求助10
2秒前
sankumao发布了新的文献求助30
2秒前
奋斗的盼柳完成签到 ,获得积分10
3秒前
4秒前
Jasper应助handsomecat采纳,获得10
4秒前
4秒前
李雪完成签到,获得积分10
5秒前
5秒前
sv发布了新的文献求助10
7秒前
小田完成签到,获得积分10
7秒前
茶茶完成签到,获得积分20
7秒前
苏兴龙完成签到,获得积分10
7秒前
坚强的亦云-333完成签到,获得积分10
7秒前
Ava应助dan1029采纳,获得10
8秒前
8秒前
8秒前
奶糖最可爱完成签到,获得积分10
9秒前
9秒前
mojomars发布了新的文献求助10
10秒前
幽壑之潜蛟应助茶茶采纳,获得10
10秒前
11秒前
11秒前
11秒前
迅速海云完成签到,获得积分10
11秒前
sjxx发布了新的文献求助10
11秒前
11秒前
乐乐应助Rachel采纳,获得10
12秒前
12秒前
12秒前
天天快乐应助孤独的珩采纳,获得10
13秒前
帅气鹭洋发布了新的文献求助20
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794