三碘化物
材料科学
钙钛矿(结构)
离子键合
太阳能电池
反应性(心理学)
卤化物
钙钛矿太阳能电池
光伏系统
化学物理
能量转换效率
无机化学
光电子学
纳米技术
化学工程
离子
色素敏化染料
电极
物理化学
电解质
化学
有机化学
病理
工程类
替代医学
生物
医学
生态学
作者
J. Carrillo-Abad,Antonio Guerrero,Sara Rahimnejad,Osbel Almora,Issac Zarazua,E. Mas-Marzá,Juan Bisquert,Germà Garcia‐Belmonte
标识
DOI:10.1002/aenm.201502246
摘要
Hybrid lead halide perovskites have reached very large solar to electricity power conversion efficiencies, in some cases exceeding 20%. The most extensively used perovskite‐based solar cell configuration comprises CH 3 NH 3 PbI 3 (MAPbI 3 ) in combination with electron (TiO 2 ) and hole 2,2′,7,7′‐tetrakis( N , N ‐di‐ p ‐methoxyphenylamine)‐9,9‐ spiro ‐bifluorene ( spiro ‐OMeTAD) selective contacts. The recognition that the solar cell performance is heavily affected by time scale of the measurement and preconditioning procedures has raised many concerns about the stability of the device and reliability for long‐time operation. Mechanisms at contacts originate observable current–voltage distortions. Two types of reactivity sources have been identified here: (i) weak Ti–I–Pb bonds that facilitate interfacial accommodation of moving iodine ions. This interaction produces a highly reversible capacitive current originated at the TiO 2 /MAPbI 3 interface, and it does not alter steady‐state photovoltaic features. (ii) An irreversible redox peak only observable after positive poling at slow scan rates. It corresponds to the chemical reaction between spiro ‐OMeTAD + and migrating I − which progressively reduces the hole transporting material conductivity and deteriorates solar cell performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI