兴奋剂
密度泛函理论
掺杂剂
混合功能
材料科学
铟
接受者
锡
氧化物
凝聚态物理
类型(生物学)
化学物理
计算化学
化学
光电子学
物理
冶金
生物
生态学
作者
Péter Ágoston,Christoph Körber,Andreas Klein,M. J. Puska,R. M. Nieminen,Karsten Albe
摘要
The intrinsic n-type doping limits of tin oxide (SnO2) and indium oxide (In2O3) are predicted on the basis of formation energies calculated by the density-functional theory using the hybrid-functional methodology. The results show that SnO2 allows for a higher n-type doping level than In2O3. While n-type doping is intrinsically limited by compensating acceptor defects in In2O3, the experimentally measured lower conductivities in SnO2-related materials are not a result of intrinsic limits. Our results suggest that by using appropriate dopants in SnO2 higher conductivities similar to In2O3 should be attainable.
科研通智能强力驱动
Strongly Powered by AbleSci AI